• Title/Summary/Keyword: apoptotic induction

Search Result 614, Processing Time 0.034 seconds

Molecular Target Therapy of AKT and NF-kB Signaling Pathways and Multidrug Resistance by Specific Cell Penetrating Inhibitor Peptides in HL-60 Cells

  • Davoudi, Zahra;Akbarzadeh, Abolfazl;Rahmatiyamchi, Mohammad;Movassaghpour, Ali Akbar;Alipour, Mohsen;Nejati-Koshki, Kazem;Sadeghi, Zohre;Dariushnejad, Hassan;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4353-4358
    • /
    • 2014
  • Background: PI3/AKT and NF-kB signaling pathways are constitutively active in acute myeloid leukemia and cross-talk between the two has been shown in various cancers. However, their role in acute myeloid leukemia has not been completely explored. We therefore used cell penetrating inhibitor peptides to define the contributions of AKT and NF-kB to survival and multi drug resistance (MDR) in HL-60 cells. Materials and Methods: Inhibition of AKT and NF-kB activity by AKT inhibitor peptide and NBD inhibitor peptide, respectively, resulted in decreased expression of mRNA for the MDR1 gene as assessed by real time PCR. In addition, treatment of HL-60 cells with AKT and NBD inhibitor peptides led to inhibition of cell viability and induction of apoptosis in a dose dependent manner as detected by flow cytometer. Results: Finally, co-treatment of HL-60 cells with sub-optimal doses of AKT and NBD inhibitor peptides led to synergistic apoptotic responses in AML cells. Conclusions: These data support a strong biological link between NF-kB and PI3-kinase/AKT pathways in the modulation of antiapoptotic and multi drug resistant effects in AML cells. Synergistic targeting of these pathways using NF-kB and PI3-kinase/AK inhibitor peptides may have a therapeutic potential for AML and possibly other malignancies with constitutive activation of these pathways.

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Caffeic Acid Phenethyl Ester Induces the Expression of NAG-1 via Activating Transcription Factor 3 (ATF3를 통한 caffeic acid phenethyl ester에 의한 NAG-1 유전자의 발현 증가)

  • Park, Min-Hee;Chung, Chungwook;Lee, Seong Ho;Baek, Seung Joon;Kim, Jong Sik
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) is a transforming growth factor beta (TGF-${\beta}$) superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. In the present study, we investigated if caffeic acid phenethyl ester (CAPE) derived from propolis could induce the expression of anti-tumorigenic gene NAG-1. Our results indicate that CAPE significantly induced NAG-1 expression in a time- and concentration-dependent manner in HCT116 cells. We also found that CAPE induced NAG-1 expression in a concentration-dependent manner in another human colorectal cancer cell line, LOVO. In addition, CAPE triggered apoptosis, which was detected with Western blot analysis using poly-(ADP-ribose) polymerase antibody. NAG-1 induction by CAPE was not dependent on transcription factor p53, which was confirmed with Western blot analysis using p53 null HCT116 cells. The luciferase assay results indicated that the new cis-elements candidates were located between -474 and -1,086 of the NAG-1 gene promoter. CAPE dramatically induced activating transcription factor 3 (ATF3) expression, but not cAMP response element-binding protein (CREB), which shares the same binding sites with ATF3. The co-transfection experiment with pCG-ATF3 and pCREB showed that only ATF3 was associated with NAG-1 up-regulation by CAPE, whereas CREB had no effect. In conclusion, the results suggest that CAPE could induce the expression of anti-tumorigenic gene NAG-1 mainly through ATF3.

Experimental Study on Inhibition Effects of the XAF1 Gene against Lung Cancer Cell Proliferation

  • Yang, Wen-Tao;Chen, Dong-Lai;Zhang, Fu-Quan;Xia, Ying-Chen;Zhu, Rong-Ying;Zhou, Duan-Shan;Chen, Yong-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7825-7829
    • /
    • 2014
  • Objective: To investigate the effect of high expression of XAF1 in vivo or in vitro on lung cancer cell growth and apoptosis. Methods: 1. The A549 human lung cancer cell line was transfected with Ad5/F35 - XAF1, or Ad5/F35 - Null at the same multiplicity of infection (MOI); (hereinafter referred to as transient transfected cell strain); XAF1 gene mRNA and protein expression was detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting respectively. 2. Methyl thiazolyl tetrazolium (MTT) and annexin V-FITC/PI double staining were used to detect cell proliferation and apoptosis before and after infection of Ad5/F35 - XAF1 with Western blotting for apoptosis related proteins, caspase 3, caspase - 8 and PARP. 3. After the XAF1 gene was transfected into lung cancer A549 cells by lentiviral vectors, and selected by screening with Blasticidin, reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were applied to detect mRNA and protein expression, to establish a line with a stable high expression of XAF1 (hereinafter referred to as stable expression cell strain). Twenty nude mice were randomly divided into groups A and B, 10 in each group: A549/XAF1 stable expression cell strain was subcutaneously injected in group A, and A549/Ctrl stable cell line stable expression cell strain in group B (control group), to observe transplanted tumor growth in nude mice. Results: The mRNA and protein expression of XAF1 in A549 cells transfected by Ad5/F35 - XAF1 was significantly higher than in the control group. XAF1 mediated by adenovirus vector demonstrated a dose dependent inhibition of lung cancer cell proliferation and induction of apoptosis. This was accompanied by cleavage of caspase -3, -8, -9 and PARP, suggesting activation of intrinsic or extrinsic apoptotic pathways. A cell strain of lung cancer highly expressing XAF1 was established, and this demonstrated delayed tumor growth after transplantation in vivo. Conclusion: Adenovirus mediated XAF1 gene expression could inhibit proliferation and induce apoptosis in lung cancer cells in vitro; highly stable expression of XAF1 could also significantly inhibit the growth of transplanted tumors in nude mouse, with no obvious adverse reactions observed. Therefore, the XAF1 gene could become a new target for lung cancer treatment.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Rice Bran Phytic Acid Induced Apoptosis Through Regulation of Bcl-2/Bax and p53 Genes in HepG2 Human Hepatocellular Carcinoma Cells

  • Al-Fatlawi, Atheer Abbas;Al-Fatlawi, Anees Abbas;Irshad, Md.;Zafaryab, Md.;Alam Rizvi, M. Moshahid;Ahmad, Ayaz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3731-3736
    • /
    • 2014
  • Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay ($p{\leq}0.03$). PA inhibited the growth of HepG2 cells in a concentration dependent manner ($p{\leq}0.04$). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down-regulation of Bcl-2 gene ($p{\leq}0.01$). At the $IC_{50}$ (2.49mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up-regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes.

Relationship between Radiation Induced Activation of DNA Repair Genes and Radiation Induced Apoptosis in Human Cell Line A431 (인체세포주 A431에서 방사선 조사 후 DNA수선 유전자 발현과 세포고사와의 관계에 관한 연구)

  • Bom, Hee-Seung;Min, Jung-Jun;Choi, Keun-Hee;Kim, Kyung-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.2
    • /
    • pp.144-153
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate the relationship between radiation-induced activation of DNA repair genes and radiation induced apoptosis in A431 cell line. Materials and Methods: Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. Results: The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and hRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, hRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Conclusion: Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. hRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.

  • PDF

Neuroprotective Effects of Cheongnoemyeongsin-hwan against Hydrogen Peroxide-induced DNA Damage and Apoptosis in Human Neuronal-Derived SH-SY5Y Cells (인체 신경세포에서 청뇌명신환(淸腦明神丸)의 산화적 스트레스에 대한 세포보호 효과)

  • Pi, Guk Hyun;Hwang, Won Deuk
    • Herbal Formula Science
    • /
    • v.25 no.1
    • /
    • pp.51-68
    • /
    • 2017
  • Objectives : Oxidative stress due to excessive accumulation of reactive oxygen species (ROS) is one of the risk factors for the development of several chronic diseases, including neurodegenerative diseases. Methods : In the present study, we investigated the protective effects of cheongnoemyeongsin-hwan (CNMSH) against oxidative stress‑induced cellular damage and elucidated the underlying mechanisms in neuronal-derived SH-SY5Y cells. Results : Our results revealed that treatment with CNMSH prior to hydrogen peroxide (H2O2) exposure significantly increased the SH-SY5Y cell viability, indicating that the exposure of the SH-SY5Y cells to CNMSH conferred a protective effect against oxidative stress. CNMSH also effectively attenuated H2O2‑induced comet tail formation, and decreased the phosphorylation levels of the histone ${\gamma}H2AX$, as well as the number of apoptotic bodies and Annexin V‑positive cells. In addition, CNMSH exhibited scavenging activity against intracellular ROS generation and restored the mitochondria membrane potential (MMP) loss that were induced by H2O2, suggesting that CNMSH prevents H2O2‑induced DNA damage and cell apoptosis. Moreover, H2O2 enhanced the cleavage of caspase-3 and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3, as well as DNA fragmentation; however, these events were almost totally reversed by pretreatment with CNMSH. Furthermore, CNMSH increased the levels of heme oxygenase-1 (HO-1), which is a potent antioxidant enzyme, associated with the induction of nuclear factor-erythroid 2-related factor 2 (Nrf2). According to our data, CNMSH is able to protect SH-SY5Y cells from H2O2-induced apoptosis throughout blocking cellular damage related to oxidative stress through a mechanism that would affect ROS elimination and activating Nrf2/HO-1 signaling pathway. Conclusions : Therefore, we believed that CNMSH may potentially serve as an agent for the treatment and prevention of neurodegenerative diseases caused by oxidative stress.

Effects of Rapamycin on Cell Apoptosis in MCF-7 Human Breast Cancer Cells

  • Tengku Din, Tengku Ahmad Damitri Al-Astani;Seeni, Azman;Khairi, Wirdatul-Nur Mohd;Shamsuddin, Shaharum;Jaafar, Hasnan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10659-10663
    • /
    • 2015
  • Background: Rapamycin is an effective anti-angiogenic drug. However, the mode of its action remains unclear. Therefore, in this study, we aimed to elucidate the antitumor mechanism of rapamycin, hypothetically via apoptotic promotion, using MCF-7 breast cancer cells. Materials and Methods: MCF-7 cells were plated at a density of $1{\times}10^5$ cells/well in 6-well plates. After 24h, cells were treated with a series of concentrations of rapamycin while only adding DMEM medium with PEG for the control regiment and grown at $37^{\circ}C$, 5% $CO_2$ and 95% air for 72h. Trypan blue was used to determine the cell viability and proliferation. Untreated and rapamycin-treated MCF-7 cells were also examined for morphological changes with an inverted-phase contrast microscope. Alteration in cell morphology was ascertained, along with a stage in the cell cycle and proliferation. In addition, cytotoxicity testing was performed using normal mouse breast mammary pads. Results: Our results clearly showed that rapamycin exhibited inhibitory activity on MCF-7 cell lines. The $IC_{50}$ value of rapamycin on the MCF-7 cells was determined as $0.4{\mu}g/ml$ (p<0.05). Direct observation by inverted microscopy demonstrated that the MCF-7 cells treated with rapamycin showed characteristic features of apoptosis including cell shrinkage, vascularization and autophagy. Cells underwent early apoptosis up to 24% after 72h. Analysis of the cell cycle showed an increase in the G0G1 phase cell population and a corresponding decrease in the S and G2M phase populations, from 81.5% to 91.3% and 17.3% to 7.9%, respectively. Conclusions: This study demonstrated that rapamycin may potentially act as an anti-cancer agent via the inhibition of growth with some morphological changes of the MCF-7 cancer cells, arrest cell cycle progression at G0/G1 phase and induction of apoptosis in late stage of apoptosis. Further studies are needed to further characterize the mode of action of rapamycin as an anti-cancer agent.

Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes

  • Lee, Jin-Yong;Tokumoto, Maki;Hattori, Yuta;Fujiwara, Yasuyuki;Shimada, Akinori;Satoh, Masahiko
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type.