• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.032 seconds

An Increased Proportion of Apoptosis in CD4+ T Lymphocytes Isolated from the Peripheral Blood in Patients with Stable Chronic Obstructive Pulmonary Disease

  • Ju, Jinyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • Background: The pathophysiology of chronic obstructive pulmonary disease (COPD) includes inflammation, oxidative stress, an imbalance of proteases and antiproteases and apoptosis which has been focused on lately. Abnormal apoptotic events have been demonstrated in both epithelial and endothelial cells, as well as in inflammatory cells including neutrophils and lymphocytes in the lungs of COPD patients. An increased propensity of activated T lymphocytes to undergo apoptosis has been observed in the peripheral blood of COPD patients. Therefore, the apoptosis of T lymphocytes without activating them was investigated in this study. Methods: Twelve control subjects, 21 stable COPD patients and 15 exacerbated COPD patients were recruited in the study. The T lymphocytes were isolated from the peripheral blood using magnetically activated cell sorting. Apoptosis of the T lymphocytes was assessed with flow cytometry using Annexin V and 7-aminoactinomycin D. Apoptosis of T lymphocytes at 24 hours after the cell culture was measured so that the T lymphocyte apoptosis among the control and the COPD patients could be compared. Results: Stable COPD patients had increased rates of $CD4^+$ T lymphocyte apoptosis at 24 hours after the cell culture, more than the $CD4^+$ T lymphocyte apoptosis which appeared in the control group, while the COPD patients with acute exacerbation had an amplified response of $CD4^+$ T lymphocyte apoptosis as well as of $CD8^+$ T lymphocyte apoptosis at 24 hours after the cell culture. Conclusion: Stable COPD patients have more apoptosis of $CD4^+$ T lymphocytes, which can be associated with the pathophysiology of COPD in stable conditions.

The importance of post-thaw subculture for standardizing cellular activity of fresh or cryopreserved mouse embryonic stem cells

  • Ko, Dong Woo;Yoon, Jung Ki;Ahn, Jong il;Lee, Myungook;Yang, Woo Sub;Ahn, Ji Yeon;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2018
  • Objective: Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. Methods: Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. Results: Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. Conclusion: The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.

Protective Effects of Ginsenoside Rg3 against Cholesterol Oxide-Induced Neurotoxicity in the Rat

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.294-304
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of various symptoms in South Korea. The neuroprotective effects of ginsenoside $Rg_3$ (G-$Rg_3$) on cholesterol-oxide-(CO)-induced neurotoxicity were investigated through the analyses of rat brains. The recently accumulated reports show that ginseng saponins (GTS), the major active ingredients of Panax ginseng, have protective effects against neurotoxin insults. In the present study, the neuroprotective effects of G-$Rg_3$ on CO-induced hippocampal excitotoxicity were examined in vivo. The in-vitro studies using rat cultured hippocampal neurons revealed that G-$Rg_3$ treatment significantly inhibited CO-induced hippocampal cell death. G-$Rg_3$ treatment not only significantly reduced CO-induced DNA damage but also attenuated CO-induced apoptosis. The in-vivo studies that were conducted revealed that the intracerebroventricular (i.c.v.) pre-administration of G-$Rg_3$ significantly reduced i.c.v. CO-induced hippocampal damage in rats. To examine the mechanisms underlying the in-vitro and in-vivo neuroprotective effects of G-$Rg_3$ against CO-induced hippocampal excitotoxicity, the effect of G-$Rg_3$ on the CO-induced elevations of the apoptotic cells in cultured hippocampal cells was examined, and it was found that G-$Rg_3$ treatment inhibited CO-induced apoptosis. The histopathological evaluation demonstrated that G-$Rg_3$ significantly diminished the apoptosis in the hippocampus and also spared the hippocampal CA1, CA3, and dentate gyrus neurons. G-$Rg_3$ also significantly improved the CO-caused behavioral impairment. G-$Rg_3$ itself had no effect, however, on the CO-induced inhibition of succinate dehydrogenase activity (data not shown). These results collectively indicate the G-$Rg_3$-induced neuroprotection against CO in rat hippocampus. With regard to the wide use of G-$Rg_3$, this agent is potentially beneficial in treating CO-induced brain injury.

Ethanol Induces Cell Death by Activating Caspase-3 in the Rat Cerebral Cortex

  • Han, Jae Yoon;Joo, Yeon;Kim, Yoon Sook;Lee, Young Ki;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.189-195
    • /
    • 2005
  • Ethanol has long been implicated in triggering apoptotic neurodegeneration. We examined the effects of ethanol on the rat brain during synaptogenesis when a spurt in brain growth occurs. This period corresponds to the first 2 postnatal weeks in rats and is very sensitive to ethanol exposure. Ethanol was administered subcutaneously to 7-day- postnatal rat pups by a dosing regimen of 3 g/kg at 0 h and again at 2 h. Blood ethanol levels peaked ($677{\pm}16.4mg/dl$) at 4 h after the first ethanol administration. The cerebral cortexes of the ethanol-treated group showed several typical symptoms of apoptosis such as chromosome condensation and disintegration of cell bodies. Activated caspase-3 positive cells were found in the cortex within 2 h of the first injection, and reached a peak at 12 h. In addition, TUNEL staining revealed DNA fragmentation in the same regions. These results demonstrate that acute ethanol administration causes neuronal cell death via a caspase-3-dependent pathway within 24 h, suggesting that activation of caspase-3 is a marker of the developmental neurotoxicity of ethanol.

Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook;Ahn, Jiwon;Choi, Chung-Hae;Yim, Nam Hui;Kang, Chang-Mo;Kim, Chun-Ho;Lee, Kyeong;Park, Hee-Moon;Song, Kyung-Bin;Won, Misun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.

Regulation of BAD Protein by PKA, PKCδ and Phosphatases in Adult Rat Cardiac Myocytes Subjected to Oxidative Stress

  • Cieslak, Danuta;Lazou, Antigone
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.224-231
    • /
    • 2007
  • $H_2O_2$, as an example of oxidative stress, induces cardiac myocyte apoptosis. Bcl-2 family proteins are key regulators of the apoptotic response while their functions can be regulated by post-translational modifications including phosphorylation, dimerization or proteolytic cleavage. In this study, we examined the role of various protein kinases in regulating total BAD protein levels in adult rat cardiac myocytes undergoing apoptosis. Stimulation with 0.1 mM $H_2O_2$, which induces apoptosis, resulted in a marked down-regulation of BAD protein, which is attributed to cleavage by caspases since it can be restored in the presence of a general caspase inhibitor. Inhibition of PKC, p38-MAPK, ERK1/2 and PI-3-K did not influence the reduced BAD protein levels observed after stimulation with $H_2O_2$. On the contrary, inhibition of PKA or specifically $PKC{\delta}$ resulted in up-regulation of BAD. Decreased caspase 3 activity was observed in $H_2O_2$ treated cells after inhibition of PKA or $PKC{\delta}$ whereas inhibition of PKA also resulted in improved cell survival. Furthermore, addition of okadaic acid to inhibit selected phosphatases resulted in enhanced BAD cleavage. These data suggest that, during oxidative stress-induced cardiac myocyte apoptosis, there is a caspase-dependent down-regulation of BAD protein, which seems to be regulated by coordinated action of PKA, $PKC{\delta}$ and phosphatases.

NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development

  • Lee, Dong-Seol;Roh, Song Yi;Choi, Hojae;Park, Joo-Cheol
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.739-748
    • /
    • 2020
  • Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth-plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.

Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts

  • Akbulut, Makbule Bilge;Arpaci, Pembegul Uyar;Eldeniz, Ayce Unverdi
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.24.1-24.12
    • /
    • 2018
  • Objectives: The aim of this in vitro study was to evaluate the biocompatibility of newly proposed root-end filling materials, Biodentine, Micro-Mega mineral trioxide aggregate (MM-MTA), polymethylmethacrylate (PMMA) bone cement, and Smart Dentin Replacement (SDR), in comparison with contemporary root-end filling materials, intermediate restorative material (IRM), Dyract compomer, ProRoot MTA (PMTA), and Vitrebond, using human periodontal ligament (hPDL) fibroblasts. Materials and Methods: Ten discs from each material were fabricated in sterile Teflon molds and 24-hour eluates were obtained from each root-end filling material in cell culture media after 1- or 3-day setting. hPDL fibroblasts were plated at a density of $5{\times}10^3/well$, and were incubated for 24 hours with 1:1, 1:2, 1:4, and 1:8 dilutions of eluates. Cell viability was evaluated by XTT assay. Data was statistically analysed. Apoptotic/necrotic activity of PDL cells exposed to material eluates was established by flow cytometry. Results: The Vitrebond and IRM were significantly more cytotoxic than the other root-end filling materials (p < 0.05). Those cells exposed to the Biodentine and Dyract compomer eluates showed the highest survival rates (p < 0.05), while the PMTA, MM-MTA, SDR, and PMMA groups exhibited similar cell viabilities. Three-day samples were more cytotoxic than 1-day samples (p < 0.05). Eluates from the cements at 1:1 dilution were significantly more cytotoxic (p < 0.05). Vitrebond induced cell necrosis as indicated by flow cytometry. Conclusions: This in vitro study demonstrated that Biodentine and Compomer were more biocompatible than the other root-end filling materials. Vitrebond eluate caused necrotic cell death.

An Immunohistochemical Study on Effect of Gastrodiae Rhizoma against Neuronal Apoptosis Following Intracerebral Hemorrhage in Rats (천마(天麻)가 뇌실질출혈 흰쥐의 신경세포 자연사에 미치는 영향에 대한 면역조직화학적 연구)

  • Song, Sang-Hoon;Lee, Joon-Suk;Shin, Jung-Won;Kim, Seong-Joon;Sohn, Nak-Won
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2011
  • Objectives: This study was carried out in order to examine the effects of Gastrodiae rhizoma(GR) ethanol extract on neuronal apoptosis in intracerebral hemorrhage(ICH)-induced rats. Methods: ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type VII in Sprague-Dawley rats. GR was orally given once a day for 3 days after ICH. Histological changes of the peri-hematoma regions were observed by cresyl vioIet staining. Bcl-2-associated X protein(Bax), B-cell blastoma 2(BcI-2) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) expressions in the affected regions were performed by immunohistochemistry. Results: 1. GR reduced apoptotic bodies and swelling neurons in the peri-hematoma regions of ICH-induced rats. 2. GR significantly reduced TUNEL positive cells in the peri-hematoma regions of ICH-induced rats. 3. GR significantly reduced Bax positive cells in the peri-hematoma regions of ICH-induced rats. 4. GR did not influence Bcl-2 expression in the peri-hematoma regions of ICH-induced rats. Conclusions: These results suggest that GR has neuroprotective effects against ICH-induced apoptosis.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.