• Title/Summary/Keyword: apoptosis event

Search Result 53, Processing Time 0.024 seconds

Apoptosis Event of Pre-implantation Development Stages in Porcine IVF Embryos (착상 전 돼지 체외수정 배아 발달 단계에서의 세포 자멸사 현상)

  • Hong, Seong-Min;Jeon, Yu-Byeol;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.183-187
    • /
    • 2009
  • In this study, we aimed to determine whether the evaluated markers of cell death could be found at particular developmental stages of normal porcine in vitro fertilization (IVF) embryos. We investigated the characteristics of spontaneous and induced apoptosis during preimplantation development stages of porcine IVF embryos. In experiment 1, to induce apoptosis of porcine IVF embryos, porcine IVF embryos at 22h post insemination were treated at different concentration of actinomycin D (0, 5, 50 and 500 ng/ml in NCSU medium). Treated embryos were incubated at $39^{\circ}C$ in 5% $CO_2$, 5% $O_2$ for 8h, and then washed to NCSU medium and incubated until blastocyst (BL) stage. We examined cleavage rate at 2days and BL development rate at 7days after in vitro culture. A significantly lower rate of cleavage was found in the 500 ng/ml group compared to others (500 ng/ml vs. 0, 5, 50 ng/ml; 27.8 % vs. 50.0%, 41.2%, 35.9%), and BL formation rate in 500 ng/ml was lower than that of others (500 ng/ml vs. 0, 5, 50 ng/ml; 8.0% vs. 12.6%, 11.2%, 12.6%). In experiment 2, to evaluate apoptotic cells, we conducted TUNEL assay based on morphological assessment of nuclei and on detection of specific DNA degradation under fluorescence microscope. This result showed that apoptosis is a normal event during preimplantation development in control group (0 ng/ml actinomycin D). A high number of BL derived control group contained at least one apoptotic cell. Actinomycin D treated BLs responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and increase in the incidence of apoptotic cell death. In 500 ng/ml group, the incidence of apoptosis increased at 4-cell stage and later. This result suggested that apoptosis is a process of normal embryonic development and actinomycin D is useful tool for the apoptosis study of porcine preimplantation embryos.

Peroxiredoxins and the Regulation of Cell Death

  • Hampton, Mark B.;O'Connor, Karina M.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.72-76
    • /
    • 2016
  • Cell death pathways such as apoptosis can be activated in response to oxidative stress, enabling the disposal of damaged cells. In contrast, controlled intracellular redox events are proposed to be a significant event during apoptosis signaling, regardless of the initiating stimulus. In this scenario oxidants act as second messengers, mediating the post-translational modification of specific regulatory proteins. The exact mechanism of this signaling is unclear, but increased understanding offers the potential to promote or inhibit apoptosis through modulating the redox environment of cells. Peroxiredoxins are thiol peroxidases that remove hydroperoxides, and are also emerging as important players in cellular redox signaling. This review discusses the potential role of peroxiredoxins in the regulation of apoptosis, and also their ability to act as biomarkers of redox changes during the initiation and progression of cell death.

Clostridium difficile Toxin A Upregulates Bak Expression through PGE2 Pathway in Human Colonocytes

  • Kim, Young Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1675-1681
    • /
    • 2019
  • Clostridium difficile toxin A is known to cause colonic epithelial cell apoptosis, which is considered the main causative event that triggers inflammatory responses in the colon, reflecting the concept that the essential role of epithelial cells in the colon is to form a physical barrier in the gut. We previously showed that toxin A-induced colonocyte apoptosis and subsequent inflammation were dependent on prostaglandin E2 ($PGE_2$) produced in response to toxin A stimulation. However, the molecular mechanism by which $PGE_2$ mediates cell apoptosis in toxin A-exposed colonocytes has remained unclear. Here, we sought to identify the signaling pathway involved in toxin A-induced, $PGE_2$-mediated colonocyte apoptosis. In non-transformed NCM460 human colonocytes, toxin A exposure strongly upregulated expression of Bak, which is known to form mitochondrial outer membrane pores, resulting in apoptosis. RT-PCR analyses revealed that this increase in Bak expression was attributable to toxin A-induced transcriptional upregulation. We also found that toxin A upregulation of Bak expression was dependent on $PGE_2$ production, and further showed that this effect was recapitulated by an Prostaglandin E2(PGE2) receptor-1 receptor agonist, but not by agonists of other EP receptors. Collectively, these results suggest that toxin A-induced cell apoptosis involves $PGE_2$-upregulation of Bak through the EP1 receptor.

Apoptosis of MCF7 Cells Treated with PKC Inhibitors and Daunorubicin

  • Park, Won-Chul;Son, Joo-Young;Chung, Sook-Hyun;An, Woon-Gun
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.128-132
    • /
    • 2002
  • The present study was performed to observe the role of protein kinase C (PKC) inhibitors (H-7, staurosporine) and daunorubicin in the cell death process of MCF7 cells; and examined whether or not the type of induced cell death was apoptosis. The usefulness of the combined therapy of PKC inhibitors and daunorubicin to improve the adverse effect of daunorubicin was also investigated. Cell death was induced by treatment with PKC inhibitors or daunorubicin. Characteristic morphologic features of cell shrinkage, chromatic condensation, and cytoplasmic vacuolization were observed. These treatments also stimulated the cleavage of poly-(ADP-ribose) polymerase (PARP), an early event in apoptosis. With slight differences in the percentage of apoptosis-induced cells, staurosporine, H-7 and daunorubicin effectively induced apoptosis in MCF7 cells. Furthermore, combined treatment of PKC inhibitors and daunorubicin significantly drove the cells into an apoptotic state. Hence, our results revealed the possible therapeutic value of combined therapy for the prevention of drug resistance and adverse side effects.

Inhibition of Invasion and Induction of Apoptosis by Curcumin in H-ras-Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Kang, Hye-Jung;Moon, Aree
    • Archives of Pharmacal Research
    • /
    • v.24 no.4
    • /
    • pp.349-354
    • /
    • 2001
  • Curcumin, a dietary pigment in turmeric, posseses anti-carcinogenic and anti-metastatic properties. The present study was conducted to study in vitro chemopreventive effects of curcumin in transformed breast cells. Here, we show that curcumin inhibits H-ras-induced invasive phenotype in MCF10A human breast epithelial cells (H-ras MCF10A) and downregulates matrix metalloproteinase (MMP)-2 dose-dependently. Curcumin exerted cytotoxic effect on H-ras MCF10A cells in a concentration-dependent manner. Curcumin-induced cell death was mainly due to apoptosis in which a prominent downregulation of Bcl-2 and upregulation of Bax were involved. We also suggest a possible involvement of caspase-3 in curcumin-induced apoptosis. Curcumin treatment resulted in the production of reactive oxygen species (ROS) in H-ras MCF10A cells. Apoptotic event by curcumin was significantly inhibited by pretreatment of an antioxidant N-acetyl-$_L$-cysteine (NAC), suggesting redox signaling as a mechanism responsible for curcumin-induced apoptosis in H-ras MCF10A cells. Taken together, our results demonstrate that curcumin inhibits invasion and induces apoptosis, proving the chemopreventive potential of curcumin .

  • PDF

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

  • Moon, Ho Suck;Yang, Joo-Sung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.7-20
    • /
    • 2006
  • The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-${\kappa}B$). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it's high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected bystander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both proand anti-apoptotic activity may explain its role in viral survival and disease progression.

Intracellular Mechanisms of Growth Hormone Action on Apoptosis in Cultured Porcine Ovarian Granulosa Cells

  • Sirotkin, A.V.;Makarevich, A.V.;Pivko, J.;Genieser, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.1045-1050
    • /
    • 2002
  • The aims of this study were to detect spontaneously occurring apoptosis in cultured porcine ovarian cells, to examine the role of growth hormone (GH), tyrosine kinase (TK), protein kinase G (PKG) and cyclin-dependent kinase (CDK) in the control of this process, and to determine whether the effect of GH on apoptosis is mediated by TK-, PKG- and cdc2-dependent intracellular mechanisms. We studied the action of pGH (10 ng/ml), blockers of TK (genistein, lavendustin, both 100 ng/ml), PKG (Rp-Br-PET-cGMPS, 50 nM; KT5823, 100 ng/ml) and CDK (olomoucine, $1{\mu}g/ml$), as well as combinations of GH with these blockers, on the onset of apoptosis in cultured granulosa cells isolated from antral (3-6 mm) porcine follicles. The functional characteristics of an early apoptotic event, DNA fragmentation, were determined using terminal deoxynucleotidyltransferase (TdT)-mediated dUTP nick end labelling (TUNEL), whilst morphological signs of advanced apoptosis such as pyknosis, chromatin marginalization, shrinkage and fragmentation of nucleus, were detected using routine light microscopy. After culture, some ovarian granulosa cells exhibited DNA fragmentation, which in some cases was associated with morphological apoptosis-related changes (pyknosis, shrinkage and fragmentation of the nucleus). GH significantly reduced the proportion of TUNEL-positive cells. Neither TK nor CDK blockers when given alone, significantly affected the percentage of TUNEL-positive cells although both PKG blockers significantly increased this index. Furthermore, TK and PKG blockers given together with GH, prevented or reversed the inhibitory effect of GH on apoptosis, whilst the CDK blocker olomoucine promoted it. These observations demonstrate apoptosis in porcine ovaries and suggest the involvement of GH, TK, PKG and CDK in the control of this process. They also suggest that the effect of GH on ovarian apoptosis is mediated or regulated by multiple signalling pathways including TK-, PKG- and CDK-dependent intracellular mechanisms.

HS 1-Associated Protein X-1 Is Cleaved by Caspase-3 During Apoptosis

  • Lee, Ah Young;Lee, Yoora;Park, Yun Kyung;Bae, Kwang-Hee;Cho, Sayeon;Lee, Do Hee;Park, Byoung Chul;Kang, Sunghyun;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.86-90
    • /
    • 2008
  • Caspase-3 (CASP3) plays a key role in apoptosis. In this study, HAX-1 was identified as a new substrate of CASP3 during apoptosis. HAX-1 was cleaved by CASP3 during etoposide-(ETO) induced apoptosis, and this event was inhibited by a CASP3-specific inhibitor. The cleavage site of HAX-1, at $Asp^{127}$, was located using N-terminal amino acid sequencing of in vitro cleavage products of recombinant HAX-1. Overexpression of HAX-1 inhibited ETO-induced apoptotic cell death. It also inhibited CASP3 activity. Together, these results suggest that HAX-1, a substrate of CASP3, inhibits the apoptotic process by inhibiting CASP3 activity.

Analysis of in vitro apoptosis induced by virulent Korean isolate of classical swine fever virus in peripheral blood B cell line

  • Kim, Seon-Mi;Lim, Seong-In;Song, Jae-Young;Hyun, Bang-Hun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.259-262
    • /
    • 2012
  • Classical swine fever (CSF) is a highly contagious disease among swine that has an important economic impact on worldwide. One clinical symptom of CSF is leukopenia, in particular lymphopenia, which is a characteristic event that occurs early in the course of CSF. Though lymphopenia associated with apoptosis, the pathogenic mechanism underlying the lymphopenia has not been well studied. To understand these mechanisms, we investigated the response of porcine B cell lines to infection with SW03, virulent strain isolated from swine tissue in Korea. This study demonstrated that SW03-infected L35 cell were induced apoptosis through the detection of activated caspase-3. In addition, SW03 infection leaded to alterations in pro-apoptotic, Bax, and anti-apoptotic, Bcl-xL proteins of Bcl-2 family. Our results would suggest that SW03-infected L35 cells induced apoptosis via intrinsic mitochondrial pathway.

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.