• Title/Summary/Keyword: aperture integration

Search Result 33, Processing Time 0.024 seconds

Ship Detection from SAR Images Using YOLO: Model Constructions and Accuracy Characteristics According to Polarization (YOLO를 이용한 SAR 영상의 선박 객체 탐지: 편파별 모델 구성과 정확도 특성 분석)

  • Yungyo Im;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Youngmin Seo;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.997-1008
    • /
    • 2023
  • Ship detection at sea can be performed in various ways. In particular, satellites can provide wide-area surveillance, and Synthetic Aperture Radar (SAR) imagery can be utilized day and night and in all weather conditions. To propose an efficient ship detection method from SAR images, this study aimed to apply the You Only Look Once Version 5 (YOLOv5) model to Sentinel-1 images and to analyze the difference between individual vs. integrated models and the accuracy characteristics by polarization. YOLOv5s, which has fewer and lighter parameters, and YOLOv5x, which has more parameters but higher accuracy, were used for the performance tests (1) by dividing each polarization into HH, HV, VH, and VV, and (2) by using images from all polarizations. All four experiments showed very similar and high accuracy of 0.977 ≤ AP@0.5 ≤ 0.998. This result suggests that the polarization integration model using lightweight YOLO models can be the most effective in terms of real-time system deployment. 19,582 images were used in this experiment. However, if other SAR images,such as Capella and ICEYE, are included in addition to Sentinel-1 images, a more flexible and accurate model for ship detection can be built.

Splitting of Surface Plasmon Resonance Peaks Under TE- and TM-polarized Illumination

  • Yoon, Su-Jin;Hwang, Jeongwoo;Lee, Myeong-Ju;Kang, Sang-Woo;Kim, Jong-Su;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.296-296
    • /
    • 2014
  • We investigate experimentally and theoretically the splitting of surface plasmon (SP) resonance peaks under TE- and TM-polarized illumination. The SP structure at infrared wavelength is fabricated with a 2-dimensional square periodic array of circular holes penetrating through Au (gold) film. In brief, the processing steps to fabricate the SP structure are as follows. (i) A standard optical lithography was performed to produce to a periodic array of photoresist (PR) circular cylinders. (ii) After the PR pattern, e-beam evaporation was used to deposit a 50-nm thick layer of Au. (iii) A lift-off processing with acetone to remove the PR layer, leading to final structure (pitch, $p=2.2{\mu}m$; aperture size, $d=1.1{\mu}m$) as shown in Fig. 1(a). The transmission is measured using a Nicolet Fourier-transform infrared spectroscopy (FTIR) at the incident angle from $0^{\circ}$ to $36^{\circ}$ with a step of $4^{\circ}$ both in TE and TM polarization. Measured first and second order SP resonances at interface between Au and GaAs exhibit the splitting into two branches under TM-polarized light as shown in Fig. 1(b). However, as the incidence angle under TE polarization is increased, the $1^{st}$ order SP resonance peak blue-shifts slightly while the splitting of $2^{nd}$ order SP resonance peak tends to be larger (not shown here). For the purpose of understanding our experimental results qualitatively, SP resonance peak wavelengths can be calculated from momentum matching condition (black circle depicted in Fig. 2(b)), $k_{sp}=k_{\parallel}{\pm}iG_x{\pm}jG_y$, where $k_{sp}$ is the SP wavevector, $k_{\parallel}$ is the in-plane component of incident light wavevector, i and j are SP coupling order, and G is the grating momentum wavevector. Moreover, for better understanding we performed 3D full field electromagnetic simulations of SP structure using a finite integration technique (CST Microwave Studio). Fig. 1(b) shows an excellent agreement between the experimental, calculated and CST-simulated splitting of SP resonance peaks with various incidence angles under TM-polarized illumination (TE results are not shown here). The simulated z-component electric field (Ez) distribution at incident angle, $4^{\circ}$ and $16^{\circ}$ under TM polarization and at the corresponding SP resonance wavelength is shown in Fig. 1(c). The analysis and comparison of theoretical results with experiment indicates a good agreement of the splitting behavior of the surface plasmon resonance modes at oblique incidence both in TE and TM polarization.

  • PDF

SNU 1.5MV Van de Graaff Accelerator (IV) -Fabrication and Aberration Analysis of Magnetic Quadrupole Lens- (SNU 1.5MV 반데그라프 가속기 (IV) -자기 4극 렌즈의 제작과 수차의 분석-)

  • Bak, H.I.;Choi, B.H.;Choi, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • A magnetic quadrupole doublet was fabricated for use at the pre-target position of SNU 1.5MV Van de Graaff accelerator and then its optical characteristics were measured and analysed. The physical dimensions are: pole length 180mm, aperture radius 25mm, pole tip radius 28.75mm. Material for poles and return yokes is carbon steel KS-SM40C. Coils have 480 turns per one pole and air-cooling is adopted. Applying the d.c. current 2.99$\pm$0.03A to the lens, and using the Hall probe, magnetic field elements $B_{\theta}$ , $B_{\gamma}$, were measured at the selected Points along each coordinate direction r,$\theta$, z. From the area integration and orthogonal polynomial fitting for the measured data, the magnetic Field gradient G=566.3$\pm$2.1 gauss/cm at lens center, the effective length L=208.3$\pm$1.44mm along the lens axis have been obtained. The harmonic contents were determined up to 20-pole from the generalized least squares fitting. The results indicate that sextupole/quadrupole is below 1.4$\pm$0.9% and all the other multipoles are below 0.5% in the region within 18mm radius at the center of lens.

  • PDF