• 제목/요약/키워드: apamin

검색결과 57건 처리시간 0.018초

기니픽의 회장평활근에서 NANC 신경전달물질의 작용기전 (Action Mechanisms of NANC Neurotransmitters in Smooth Muscle of Guinea Pig Ileum)

  • 김종훈;강복순;이영호
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.783-796
    • /
    • 1997
  • The relaxation induced by stimulation of the inhibitory non-adrenergic, non-cholinergic (iNANC) nerve is mediated by the release of iNANC neurotransmitters such as nitric oxide (NO), vasoactive intestinal peptide (VIP) and adenosine triphosphate (ATP). The mechanisms of NO, VIP or ATP-induced relaxation have been partly determined in previous studies, but the detailed mechanism remains unknown. We tried to identify the nature of iNANC neurotransmitters in the smooth muscle of guinea pig ileum and to determine the mechanism of the inhibitory effect of nitric oxide. We measured the effect of NO-donors VIP and ATP on the intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$, by means of a fluorescence dye(fura 2) and tension simultaneously in the isolated guinea pig ileal smooth muscle. Following are the results obtained. 1. Sodium nitroprusside $(SNP:10^{-5}\;M)$ or S -nitro-N-acetyl-penicillamine $(SNP:10^{-5}\;M)$ decreased resting $[Ca^{2+}]_i$ I and tension of muscle. SNP or SNAP also inhibited rhythmic oscillation of $[Ca^{2+}]_i$ and tension. In 40mM $K^+$ solution or carbachol ($(CCh:10^{-6}\;M)$-induced precontracted muscle, SNP decreased muscle tension. VIP did not change $[Ca^{2+}]_i$ and tension in the resting or precontracted muscle, but ATP increased resting $[Ca^{2+}]_i$ and tension in the resting muscle. 2. 1H-[1,2,4]oxadiazol(4,3-a)quinoxalin-1-one $(ODQ:1\;{\mu}M)$, a specific inhibitor of soluble guanylate cyclase, limited the inhibitory effect of SNP 3. Glibenclamide $(10\;{\mu}M)$, a blocker of $K_{ATP}$ channel, and 4-aminopyridine (4-AP:5 mM), a blocker of delayed rectifier K channel, apamin $(0.1\;{\mu}M)$, a blocker of small conductance $K_{Ca}$ channel had no effect on the inhibitory effect of SNP. Iberiotoxin $(0.1\;{\mu}M)$, a blocker of large conductance $K_{Ca}$ channel, significantly increased the resting $[Ca^{2+}]_i$, and tension, and limited the inhibitory effect of SNP. 4. Nifedipine $(1\;{\mu}M)$ or elimination of external $Ca^{2+}$ decreased not only resting $[Ca^{2+}]_i$ and tension but also oscillation of $[Ca^{2+}]_i$ and tension. Ryanodine $(5\;{\mu}M)$ and cyclopiazonic acid $(10\;{\mu}M)$ decreased oscillation of $[Ca^{2+}]_i$ and tension. 5. SNP decreased $Ca^{2+}$ sensitivity of contractile protein. In conclusion, these results suggest that 1) NO is an inhibitory neurotransmitter in the guinea pig ileum, 2) the inhibitory effect of SNP on the $[Ca^{2+}]_i$ and tension of the muscle is due to a decrease in $[Ca^{2+}]_i$ by activation of the large conductance $K_{Ca}$ channel and a decrease in the sensitivity of contractile elements to $Ca^{2+}$ through activation of G-kinase.

  • PDF

기니피그 유문부 윤상근의 자발적 수축 및 서파에 대한 nitric oxide의 억제적 작용과 Ca2+ 및 K+ 통로의 관련성 (Involvement of Ca2+ and K+ channels in the action of NO on gastric circular muscle)

  • 김태완;라준호;양일석
    • 대한수의학회지
    • /
    • 제41권4호
    • /
    • pp.485-495
    • /
    • 2001
  • It was investigated whether $Ca^{2+}$ and $K^+$ channels were involved in the inhibitory action of nitric oxide (NO) on the contractile and slow wave activity of guinea pig gastric antral circular muscle. The gastric antral circular muscle showed spontaneous phasic contraction and slow wave. NO donors, 3-morpholinosydnonimine hydrochloride (SIN-1, $0.01{\sim}100{\mu}M$) and S-nitroso-L-cysteine (CysNO, $0.001{\sim}10{\mu}M$), reduced not only the amplitude of phasic contraction but also that of slow wave in a concentration-dependent manner. Both the perfusion of $Ca^{2+}$-free solution and the administration of $Ni^{2+}$, a nonselective $Ca^{2+}$ channel blocker, reduced the phasic contraction as well as the amplitude and frequency of the slow wave. The effects of these treatments were similar to those of NO donors. Nifedipine ($10{\mu}M$), a specific L-type $Ca^{2+}$ channel blocker, abolished the phasic contraction and remarkably reduced the plateau of slow wave but had no profound effect on the upstroke of slow wave. In the whole-cell patch clamp mode, CysNO shifted the steady-state activation curve for L-type $Ca^{2+}$ current to the right and the steady-state inactivation curve to the left. Pretreatment of various $K^+$ channel blockers such as tetraethylammonium (1 mM), 4-aminopyridine (0.5 mM), glibenclamide (10 mM), apamin ($0.1{\mu}M$), and iberiotoxin ($0.1{\mu}M$) did not affect the inhibitory action of SIN-1. These results suggest that NO donors suppress mechanical and electrical activity of guinea pig gastric antral circular muscle by inhibition of L-type $Ca^{2+}$ channel rather than by activation of $K^+$ channels.

  • PDF

Pharmacological Evidence that Cromakalim Inhibits $Ca^{2+}$ Release from Intracellular Stores in Porcine Coronary Artery

  • Rhim, Byung-Yong;Hong, Sun-Hwa;Kim, Chi-Dae;Lee, Won-Suk;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.27-34
    • /
    • 1997
  • In the present study, it was aimed to further indentify the intracellular action mechansm of cromakalim and levcromakalim in the porcine coronary artery. In intact porcine coronary arterial strips loaded with fura-2/AM, acetylcholine caused an increase in intracellular free $Ca^{2+}$ $([Ca^{2+}]_i)$ in association with a contraction in a concentration-dependent manner. Cromakalim (1 ${\mu}M$) caused a reduction in acetylcholine-induced increased $[Ca^{2+}]_i$ not only in the mormal physiological salt solution (PSS) but also in $Ca^{2+}$-free PSS (containing 1 mM EGTA). In the skinned strips prepared by exposure of tissue to 20 .${\mu}M$ B-escin, inositol 1,4,5-trisphosphate ($IP_3$) evoked an increase in $[Ca^{2+}]_i$, but it was without effect on the intact strips. The $IP_3$-induced increase in $[Ca^{2+}]_i$ was inhibited by cromakalim by 78% and levcromakalim by 59% (1 .${\mu}M$, each). Pretreatment with glibenclamide (a blocker of ATP-sensitive $K^+$ channels, 10 .${\mu}M$) and apamin (a blocker of small conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) strongly blocked the effect of cromakalim and levcromakalim. However, charybdotoxin (a blocker of large conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) was without effect. In addition, cromakalim inhibited the $GTP{\gamma}S$ (100 .${\mu}M$, non-hydrolysable analogue of GTP)-induced increase in $[Ca^{2+}]_i$. Based on these results, it is suggested that cromakalim and levcromakalim exert a potent vasorelaxation, in part, by acting on the $K^+$ channels of the intracellular sites (e.g., sarcoplasmic reticulum membrane), thereby, resulting in decrease in release of $Ca^{2+}$ from the intracellular storage site.

  • PDF

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

K+ 통로 조절 약물이 마우스 골격근의 피로현상에 미치는 영향 (Effects of potassium channel modulators on the fatigue velocity of mouse skeletal muscle)

  • 이기호;류판동;이문한;이항
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.245-254
    • /
    • 1995
  • The density of ATP-sensitive potassium($K_{APT}$) channels, that open as intracellular ATP concentration falls below a critical level, is very high in skeletal muscle surface membrane and those high density may imply that $K_{ATP}$ channels have very important physiological roles. To elucidate a role of $K_{ATP}$ in relation to fatigue, the modulating effects of potassium channel openers and blockers on the fatigue velocity(FV) of mouse extensor hallucis longus muscle(EHL) were investigated in vitro. Twitch contraction was induced by an electrical field stimulation (EFS: 24-48V, 20ms, 0.2-4Hz) and resulting contraction force was isometrically recorded. The twitch forces were gradually decreased to 25% of initial contraction force(ICF) in $37.52{\pm}1.55sec$($mean{\pm}s.e.m.$, n=135), indicating the fatigue phenomena. The mean velocity for development of the fatigue was measured during the period that twitch force decreased to half($FV_{0/0.5}$) and during the period from half to 25%($FV_{0.5/0.25}$) of ICF. The fatigue was induced once every one hour and the tissue response was stable for up to 4 hours. In control condition, ICF was $5.8{\pm}0.12g$ (n=144) and decreased to 50% of ICF with the mean fatigue velocity of $0.182{\pm}0.006g/sec$($FV_{0/0.5}$, n=135) and from 50% to 25% of ICF with $0.084{\pm}0.004g/sec$($FV_{0.5/0.25}$, n=135). Cromakalim($50{\mu}M$) significantly increased $FV_{0.5/0.25}$(n=4). Glibenclamide($IC_{50}>50{\mu}M$), $Ba^{2+}$($IC_{50}=10{\mu}M$), 4-aminopyridine($FV_{0/0.5}$, $IC_{50}=0.5mM$; $FV_{0.5/0.25}$, $IC_{50}=2mM$) decreased both $FV_{0/0.5}$ and $FV_{0.5/0.25}$ concentration-dependently up to 75%. $TEA^+$(30mM), E-4031($10{\mu}M$), tolbutamide(1mM) decreased $FV_{0.5/0.25}$, but apamin(300nM) and $TEA^+$(10mM) showed no significant effects. Our results suggest that activation of the $K_{ATP}$ channels may be major cause of $K^+$ outflux during development of the fatigue and the isolated EHL muscle could be an useful experimental preparation in studying the fatigue phenomena in skeletal muscle. In addition, the possibility of activation of delayed rectifier during the fatigue development remains to be studied further.

  • PDF

정제봉독의 ADH와 ALDH 활성 효과 (ADH and ALDH Activation of Purified Bee Venom (Apis mellifera L.))

  • 한상미;홍인표;우순옥;김세건;장혜리
    • 한국양봉학회지
    • /
    • 제32권3호
    • /
    • pp.269-273
    • /
    • 2017
  • 본 연구에서는 서양종꿀벌의 일벌에서 채집하여 정제한 정제봉독이 알코올 분해능에 관련이 있는 ADH와 ALDH 효소 활성에 미치는 영향을 알아보고자 하였다. ADH와 ALDH 활성은 in vitro kit를 사용하여 측정하였다. 그 결과 정제봉독 처리에 의해 ADH와 ALDH 효소 활성이 크게 증가하는 것으로 확인되었다. ADH 효소는 1mg/ml 이상의 정제봉독을 처리했을 경우 양성대조구(2mg/ml) 대비 $88.6{\pm}7.34%$의 활성도를 보였으며, ALDH 효소 역시 1mg/ml 이상의 정제봉독에서 양성대조구(2mg/ml) 대비 $94.6{\pm}0.57%$의 활성도를 나타내었다. 이상의 결과로 정제봉독은 숙취 해소능에 영향을 미치는 지표물질인 ADH와 ALDH 효소 활성을 크게 증가시키는 것으로 사료되었으며, 향후 추가시험을 통해 숙취해소 작용을 갖는 식의약품 소재로 사용 될 수 있을 것으로 생각된다.

기니피그 유문동에서 기록되는 억제성 접합부 전압에 미치는 전해질과 약물의 효과 (Effects of Electrolytes and Drugs on the Inhibitory Junction Potentials Recorded from the Antrum of Guinea-pig Stomach)

  • 구용숙;서석효;이석호;황상익;김기환
    • The Korean Journal of Physiology
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 1990
  • 기니피그 유문동 부위를 절제한 뒤 점막층을 박리하고 윤상근 주행방향으로 길이 10 mm, 너비 2 mm 되는 조직 절편을 만들어 수평형 실험용기에 넣어 핀으로 고정하였다. 유리미세전극을 세포내에 삽입하여 서파를 기록하면서 조직양편에 설치한 백금자극전극(직경 0.5 mm)에 강도 $10{\sim}50V$, 기간 $50{\sim}100\;{\mu}s$ 되는 자극파를 주어 신경-근 부위의 접합부 전압을 기록하여 다음과 같은 결과를 얻었다. 1) 위저부에서는 흥분성 접합부 전압이, 유문동에서는 억제성 접합부 전압이 기록되었고 유문동의 억제성 접합부 전압은 atropine($10^{-6}\;M)$과 guanethidine$(5{\times}10^{-6}\;M)$을 동시 처치했을 때 영향을 받지 않았다. 2) 세포외 $Ca^{2+}$ 농도를 높였을 때(7 mM)는 억제성 접합부 전압의 크기가 증가하고 세포외 $Mg^{2+}$ 농도를 높였을 때(5 mM)와 verapamil($10^{-5}\;M$)을 주었을 때는 억제성 접합부 전압의 크기가 감소하였다. 3) 아데노신을 투여하였을 때와 ATP를 투여했을 때는 모두 억제성 접합부 전압의 크기가 감소하였다. 4) 5-HT$(10^{-6}\;M)$을 투여했을 때는 서파크기에는 변화없이 억제성 접합부 전압의 크기만 감소하였고 5-HT type 2 길항제인 ketanserin$(5{\times}10^{-6}\;M)$을 투여했을 때는 서파크기는 현저히 감소한 반면 억제성 접합부 전압크기는 변화가 없었다. 이상의 결과로부터 유문동에서 기록되는 억제성 접합부 전압은 비아드레날린, 비콜린 동작성 신경에 의해 유발되며 $Ca^{2+}$은 비아드레날린 비콜린 동작성 신경에서 신경흥분전달물질의 유리를 촉진시키고 분비된 신경흥분전달물질로 인해 $Ca^{2+}$ 의존성 $K^{+}$ 통로가 활성화되어 억제성 접합부 전압의 크기를 증가시킨다고 사료된다.

  • PDF