• 제목/요약/키워드: antiwashout admixture

검색결과 32건 처리시간 0.035초

플라이애시를 혼입한 수중불분리성 콘크리트의 내 황산염에 관한 실험적 연구 (An Experimental Study on the Sulfate Resistance of Fly Ash Antiwashout Underwater Concrete)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제25권3호
    • /
    • pp.40-46
    • /
    • 2011
  • This paper describes the effects of fly ash replacement on the sulfate resistance of antiwashout underwater concrete which was replaced cement by fly ash from 0% to 50%. and the experimental works were performed on sulfate acceleration test of 5%$Na_2SO_4$ solution to find out the variance of length and weight of specimens. The experimental result shows that the length of specimens of antiwashout underwater concrete age at 180day was highly increased compare with normal concrete by acceleration test. but the mixture which was replaced 50% of fly ash shows reduction of the expansion, weight various, compare with normal concrete specimen. accordingly by using fly ash as admixture in antiwashout underwater concrete in sea environment, it will makes more durable for the attacks of sulfate by sea water.

W/C 변화에 따른 수중불분리 콘크리트의 기초특성에 관한 실험적 연구 (An Experimental Study on the Fundamental Characteristics of Antiwashout Underwater Concrete with Variation of Water-cement Ratio)

  • 김명식;어영선;윤재범;이상명
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.21-29
    • /
    • 1999
  • In this study, an experiment was performed to analyze the influence of water-cement ratio on the fundamental characteristics of antiwashout underwater concrete using blended sand (sea sand:river sand = 1:1). The water-cement ratio (45%, 50%, 55%, 60%), andtiwashout underwater agent contents (0.82%, 1.00%, 1.14% of water contents per unit volume of concrete), and superplasticizer contents (1.5%, 2.0%, 2.5% of cement contents per unit volume of concrete) were chosen as the experimental parameters. The experimental results show that the underwater segregation resistance, unit weight of hardening concrete and compressive strength were increased as the water-cement ratio decreased and as the antiwashout underwater agent contents increased. On the other hand, the flowability(slump flow) was increased to the 55% of the increase of water-cement ratio, however, it was decreased at the ratio of 60%. From this study, the antiwashout underwater concrete can potentially be used as a materials underwater work of ocean if the water-cement ratio and chemical admixture contents for the suitable balance between cost and performance are properly selected.

수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구 (Water temperature effects on the early strength characteristics of antiwashout underwater concrete)

  • 이승훈;정재홍;안태송;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성 (Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature)

  • 이병덕;원종필;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구 (A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures)

  • 문한영;신국재;이창수
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출 (Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure)

  • 원종필;이재영;박찬기;이상우;김완영
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.

고로슬래그 미분말을 혼합한 고강도 수중불분리성 콘크리트 (High-strength Antiwashout Underwater Concrete Containing the GGBF Slag)

  • 문한영;송용규;전중규;김태욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.199-202
    • /
    • 1999
  • Recently, the antiwahout underwater concrete with an natiwashout admixture has been increasingly used for underwater structures. However, the credibility of antiwahout underwater concrete was brought up as problems because it was seldom applied to fields. In this study, experiments were made on the basic properties of antiwashout underwater concrete replaced with GGBF Slag from 40% to 60% to improve its properties. Resultant to the test, we got the results as follows; the difference of U-type heght was decreased, and the slump flow was increased. Whereas the amount of suspended solids became high as to increasing the replacement ratio of GGBF Slag, pH value became low. Beacause the ratio of compressive strengths (in water compared to in air) at 28days was obtained over 90%, its value is satisfied with 70% of a criterion.

  • PDF

광물질혼화재 혼합 수중불분리성 콘크리트의 물성 및 동결융해 저항성 (Freezing and Thawing Resistance and fundamental Properties of Antiwashout Underwater Concrete Containing Mineral Admixtures)

  • 문한영;신국재;송용규
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.455-464
    • /
    • 2005
  • 수중불분리성 콘크리트의 적용 사례가 점차 증대되고 있는 추세임에도 불구하고 역사가 짧은 탓으로 신뢰성 등에 대한 문제점을 지적하고 있다 특히 수중불분리성 콘크리트는 동결응해에 대한 저항성이 매우 취약한 것으로 알려져 있어 일본토목학회에서는 동결융해작용을 받는 지역에서는 사용해서는 않된다고 규정하고 있다. 본 연구에서는 수중불분리성 콘크리트의 내구성을 향상시키기 위한 목적으로 광물질혼화재 3종류로 제조한 수중불분리성 콘크리트의 기초물성과 동결응해 저항성에 대한 실험을 실시하였다. 본 연구실험결과 FA20 및 SG50의 유동성 및 장기강도는 기준콘크리트 보다 양호한 경향을 보인 반면 현탁물질량은 약간 큰 값을 나타내었다. 한편 MK10의 경우, 빠른 수화반응으로 현탁물질량과 압축강도는 양호한 결과를 나타내었으나 유동성은 다소 떨어지는 문제점이 있었다. 한편, 수중불분리성 콘크리트의 동결응해 저항성은 셀룰로오스계 수중불분리성 혼화제에 의한 크고 불규칙한 갇힌공기 때문에 광물질혼화재를 혼합한 경우에도 효과가 적었으나 SG50과 MK10의 공기량 $6{\pm}0.5\%$의 경우, 동결응해 저항성이 약간 향상되는 결과를 얻었다. 그러나 고로슬래그 미분말의 분말도를 달리한 경우 분말도가 증가할수록 활성도가 높아져 동결응해 저항성이 향상되는 경향을 나타내었다.

광물질 혼화재료를 첨가한 수중불분리성 콘크리트의 특성에 관한 연구 (A Study on the Charateristics of Antiwashout Underwater Concrete with Mineral Admixture)

  • 백동일;김명식;장희석
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.777-783
    • /
    • 2004
  • 본 연구에서는 고로슬래그미분말과 플라이애쉬의 치환율 변화에 따른 굳지 않은 수중불분리성 콘크리트와 경화한 수중불분리성 콘크리트의 특성에 관하여 연구하고자 하였다. 실험변수는 W/C비는 50%로, S/a는 40%로 고정하고, 고로슬래그는 0, 10, n, 30, 40, 50, 60%로 치환하였으며, 플라이애쉬는 0, 10, 15, 20, 25, 30, 35%로 치환하여 고로슬래그미분말과 플라이애쉬의 치환율 변화에 따른 수중불분리성 콘크리트의 특성에 관하여 연구하였다. 굳지 않은 수중불분리성 콘크리트의 pH 현탁물질량 그리고 슬럼프플로우를 측정하였으며, 경화한 수중불분리성 콘크리트의 재령 7일, 28일, 56일의 압축강도를 측정하였다. 굳지 않은 수중불분리성 콘크리트의 pH 현탁물질량, 그리고 슬럼프플로우를 측정한 결과, 모두 대한토목학회에서 제시한 기준값과 배합설계기준값을 모두 만족하는 것으로 나타났다. 재령에 따른 경화한 수중불분리성 콘크리트의 압축강도는 전체적으로 해수에서 제작?양생한 것이 해수에 포함된 염류 중에 황산마그네슘($MgSO_4$)이 콘크리트의 수화시 발생되는 수산화칼슘($Ca(OH)_2$)과 반응하여 생성된 에트링자이트(ettringite)로 인하여 콘크리트의 부피를 팽창시켜 열화를 일으켜 담수에서 제작 양생한 콘크리트의 압축강도보다 낮게 발현되는 것으로 나타났다. 종합적으로 검토해 본 결과, 수중공사의 특성상 수질오염, 다짐의 어려움이 큰 시공상의 특성 및 압축강도특성 등을 고려할때 고로슬래그미분말 및 플라이애쉬의 최적 치환율은 30%인 것으로 판단된다.

플라이애쉬 수중불분리성 콘크리트의 내해수성에 관한 염화물 촉진 시험 (An Experimental Study of Chloride Acceleration on the Seawater Resistance of Fly Ash Antiwashout Underwater Concrete)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.29-34
    • /
    • 2005
  • This paper describes the effect of fly ash replacement on seawater resistance of anti-washout underwater concrete, which was replaced cement by fly ash from $0\%$ to $50\%$. The experimental work was performed to find out the variations of length and weight of specimens, using a chloride acceleration test in $40\^{\circ}$C The results shaw that the admixture using fly ash on an anti-washcout underwater concrete in the sea environment makes it more durable for the attacks of chloride by seawater. Also, the length of specimens of anti-washout underwater concrete, at age 180 days, increased substantially, compared with normal concrete; however, the mixture in which cement was replaced $50\%$ of fly ash shows $93\%$ reduction of the expansion, compared with the normal anti "washout underwater concrete specimen.