• Title/Summary/Keyword: antistripping agents

Search Result 3, Processing Time 0.016 seconds

Effect of Antistripping Agent on the Enhancement of Resistance to Moisture Damage of Asphalt Mixture (아스팔트 혼합물의 내수분손상 향상에 대한 박리방지제의 효과)

  • Lee, Eun-Kyoung;Choi, Sei-Young
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.182-190
    • /
    • 2009
  • In this work, effect of antistrip additives to reduce moisture damage of asphalt mixture were studied. Asphalt antistripping agents were prepared by condensation of formaldehyde with tetraethylene pentamine (TEPA), triethylenetetramine (TETA) and bis(hexamethylene)-triamine (BHMT), respectively. And also the metal type antistripping agent was prepatred by neutralization of stearic acid or palmitic acid with metal hydroxide. Mechanical characteristics of the asphalt mixture added antistripping agent were evaluated with Marshall stability, submerging residuals and coating rate. It was found that antistripping agent prepared in this study reduced moisture damages of asphalt mixtures. In particular, asphalt mixtures added BHMT and C/S (Calcium stearate hydroxide) antistripping agent showed highest submerging and coating rate. Because BHMT and C/S type antistripping agent was to improve bonding between asphalt and aggregate owing to increase of amine concentration and role of metal surfactant.

  • PDF

The Synthesis and characterization of of asphalt anti-stripping agents, amides synthesized from waste oils (폐오일을 이용한 아마이드계 아스팔트 박리방지제의 합성 및 특성 분석)

  • Lee, Sang Ah;Kim, Jiwung;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.300-304
    • /
    • 2016
  • The asphalt antistripping agents were synthesized from ethylenediamine (ED) or N,N'-bis(2-hydroxyethyl)ethylenediamine (HEED) with three different fatty acids. The formation of amide bonds were successfully performed and confirmed by FT-IR and $^1H-NMR$ data. The adhesive properties of antistripping agents were compared in terms of contact angle and BBS test. The reaction product of ED with waste animal fat exhibited the most hydrophobic by the contact angle measurement, and the strongest water resistance of 94 % by BBS test. However, the reaction product of ED with waste vegetable oil showed the strongest absolute bond strength of ca. 3610 and 3227 kPa for before and after water conditioning, respectively. For the bond strength in general, the reaction products of ED were superior to HEED reaction products, and the reaction products of animal fat and waste vegetable oil were superior to those of pure soybean oil.

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.