• Title/Summary/Keyword: antimalarial activities

Search Result 16, Processing Time 0.018 seconds

C-Flavonoidal Glycosides from Erythrina caffra Flowers

  • El-Masry, Sawsan;Hammoda, Hala M.;Radwan, Mohamed M.;Ross, Samir A.;Zaatout, Hala H.
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • A phytochemical investigation of the ethanolic extract of Erythrina caffra flowers from an Egyptian origin yielded three C-flavonoidal glycosides; 5,7,4'-trihydroxyflavone-8-C-$\beta$-D-glucopyranoside (vitexin) (1), 5,7,4'-trihydroxyflavone-6-C-$\beta$-D-glucopyranosyl-(1 $\rightarrow$ 2)-$\beta$-D-glucopyranoside (isovitexin-2"-$\beta$-D-glucopyranoside) (2), 5, 7, 4'-trihydroxyflavone-6, 8-di-C-$\beta$-D-glucopyranoside (vicenin-2) (3) and one O-flavonoidal glycoside; kaempferol-3-O-$\beta$-D.glucopyranosyl) (1 $\rightarrow$ 2)-$\beta$-D-glucopyranoside (4). The structures of the isolated compounds (1 - 4) were elucidated using different spectral techniques (UV, 1D and 2D NMR and HRESIMS). This is the first report for the isolation of flavonoidal glycosides from Erythrina caffra. The antibacterial, antifungal, antimalarial, and antileishmanial activities of the isolates were evaluated. In addition, the cytotoxic activity of the ethanolic extract and the main fractions were tested using brine shrimp bioassay.

EFFECTS OF POLYPHENOLS OF Cocos Nucifera HUSK FIBRE ON SELECTED KIDNEY FUNCTION INDICES IN MICE

  • Adebayo, Joseph Oluwatope;Owolabi, O.O.;Adewumi, O.S.;Balogun, E.A.;Malomo, S.O.
    • CELLMED
    • /
    • v.9 no.1
    • /
    • pp.2.1-2.6
    • /
    • 2019
  • Decoction of Cocos nucifera husk fibre is used indigenously in Nigeria for malaria treatment. Polyphenols have been identified as the phytochemicals responsible for the antimalarial activity of Cocos nucifera husk fibre, though their toxicity has not been evaluated. The polyphenols of Cocos nucifera husk fibre were therefore evaluated for their effects on selected kidney function indices in mice. Fifty mice were randomly divided into five groups (A-E) of ten mice each. Mice in group A were orally administered 5% DMSO solution while those in groups B, C, D and E were orally administered 31.25, 62.5, 125 and 250 mg/Kg body weight of the polyphenols respectively for seven days. Serum urea, creatinine and uric acid concentrations were determined. Serum levels of sodium, potassium, chloride and calcium ions and kidney alkaline phosphatase (ALP), glutamate dehydrogenase (GDH) and gamma-glutamyltransferase (GGT) activities were also determined. The results showed that the polyphenols significantly reduced (p<0.05) urea concentration at 250 mg/Kg body weight and creatinine concentration at all doses compared to controls. The polyphenols caused no significant alteration (p>0.05) in serum uric acid concentration and kidney ALP, GGT and GDH activities compared to controls. There was significant increase (p<0.05) in serum sodium ion concentration at 31.25, 125 and 250 mg/Kg body weight of polyphenols whereas significant increase (p<0.05) in serum potassium and chloride ions was observed at 62.5 and 250 mg/Kg body weight compared to controls. Thus, polyphenols of Cocos nucifera husk fibre may adversely affect some osmoregulatory functions of the kidney, especially at higher concentrations.

An International Collaborative Program To Discover New Drugs from Tropical Biodiversity of Vietnam and Laos

  • Soejarto, Djaja D.;Pezzuto, John M.;Fong, Harry H.S.;Tan, Ghee Teng;Zhang, Hong Jie;Tamez, Pamela;Aydogmus, Zeynep;Chien, Nguyen Quyet;Franzblau, Scott G.;Gyllenhaal, Charlotte;Regalado, Jacinto C.;Hung, Nguyen Van;Hoang, Vu Dinh;Hiep, Nguyen Tien;Xuan, Le Thi;Hai, Nong Van;Cuong, Nguyen Manh;Bich, Truong Quang;Loc, Phan Ke;Vu, Bui Minh;Southavong, Boun Hoong
    • Natural Product Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • An International Cooperative Biodiversity Group (ICBG) program based at the University of Illinois at Chicago initiated its activities in 1998, with the following specific objectives: (a) inventory and conservation of of plants of Cuc Phuong National Park in Vietnam and of medicinal plants of Laos; (b) drug discovery (and development) based on plants of Vietnam and Laos; and (c) economic development of communities participating in the ICBG project both in Vietnam and Laos. Member-institutions and an industrial partner of this ICBG are bound by a Memorandum of Agreement that recognizes property and intellectual property rights, prior informed consent for access to genetic resources and to indigenous knowledge, the sharing of benefits that may arise from the drug discovery effort, and the provision of short-term and long-term benefits to host country institutions and communities. The drug discovery effort is targeted to the search for agents for therapies against malaria (antimalarial assay of plant extracts, using Plasmodium falciparum clones), AIDS (anti-HIV-l activity using HOG.R5 reporter cell line (through transactivation of the green fluorescent protein/GFP gene), cancer (screening of plant extracts in 6 human tumor cell lines - KB, Col-2, LU-l, LNCaP, HUVEC, hTert-RPEl), tuberculosis (screening of extracts in the microplate Alamar Blue assay against Mycobacterium tuberculosis $H_{37}Ra\;and\;H_{37}Rv),$ all performed at UIC, and CNS-related diseases (with special focus on Alzheimer's disease, pain and rheumatoid arthritis, and asthma), peformed at Glaxo Smith Kline (UK). Source plants were selected based on two approaches: biodiversity-based (plants of Cuc Phuong National Park) and ethnobotany-based (medicinal plants of Cuc Phuong National Park in Vietnam and medicinal plants of Laos). At mc, as of July, 2001, active leads had been identified in the anti-HIV, anticancer, antimalarial, and anti- TB assay, after the screening of more than 800 extracts. At least 25 biologically active compounds have been isolated, 13 of which are new with anti-HIV activity, and 3 also new with antimalarial activity. At GSK of 21 plant samples with a history of use to treat CNS-related diseases tested to date, a number showed activity against one or more of the CNS assay targets used, but no new compounds have been isolated. The results of the drug discovery effort to date indicate that tropical plant diversity of Vietnam and Laos unquestionably harbors biologically active chemical entities, which, through further research, may eventually yield candidates for drug development. Although the substantial monetary benefit of the drug discovery process (royalties) is a long way off, the UIC ICBG program provides direct and real-term benefits to host country institutions and communities.

Chemical Constituents from the Aerial Parts of Vernonia cinerea L. and Their Anti-Inflammatory Activity (베르노니아 시네레아 지상부의 화학 성분 및 항염증 활성)

  • Youn, Ui Joung;Chang, Leng Chee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2016
  • Background: Previous phytochemical studies of whole Vernonia cinerea L. plants have identified sesquiterpene lactones, sterols, and triterpenes, which possess anticancer, antifeedant, and antimalarial activities. However, there are no reports of other types of bioactive metabolites. Therefore, the present study aimed to identify phenolic compounds with anti-inflammatory activity in the aerial parts of the plant. Methods and Results: Compounds were isolated from the aerial parts of V. cinerea using a silica and C-18 gel columns and semi-preparative HPLC instrument, and the structures of the compounds were determined using one- and two- dimension nuclear magnetic resonance spectroscopy and mass spectroscopy. The chloroform soluble extracts and isolated compounds were evaluated for their anti-inflammatory potential based on their ability to inhibit nitric oxide production and $TNF-{\alpha}$ induced $NF-{\kappa}B$ activity. Conclusions: Phytochemical study of the aerial parts of V. cinerea led to the isolation of six phenolic compounds. Compound 1 was a major metabolite, and to the best of our knowledge, compounds 2 - 6 were isolated from V.cinerea for the first time. Among the isolates, compounds 1 and 3 exhibited $TNF-{\alpha}$-induced $NF-{\kappa}B$ activity with $IC_{50}$ values of 7.5 and 11.5 M, respectively, and the inhibitory activity of phenyl propanoid compound 3 on $TNF-{\alpha}$-induced $NF-{\kappa}B$ was evaluated for the first time.

Anti-Influenza Activity of Betulinic Acid from Zizyphus jujuba on Influenza A/PR/8 Virus

  • Hong, Eun-Hye;Song, Jae Hyoung;Kang, Kyo Bin;Sung, Sang Hyun;Ko, Hyun-Jeong;Yang, Heejung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.345-349
    • /
    • 2015
  • Betulinic acid, a pentacyclic triterpene isolated from Jujube tree (Zizyphus jujuba Mill), has been known for a wide range of biological and medicinal properties such as antibacterial, antimalarial, anti-inflammatory, antihelmintic, antinociceptive, and anticancer activities. In the study, we investigated the antiviral activity on influenza A/PR/8 virus infected A549 human lung adenocarcinoma epithelial cell line and C57BL/6 mice. Betulinic acid showed the anti-influenza viral activity at a concentration of $50{\mu}M$ without a significant cytotoxicity in influenza A/PR/8 virus infected A549 cells. Also, betulinic acid significantly attenuated pulmonary pathology including increased necrosis, numbers of inflammatory cells and pulmonary edema induced by influenza A/PR/8 virus infection compared with vehicle- or oseltamivir-treated mice in vivo model. The down-regulation of IFN-${\gamma}$ level, which is critical for innate and adaptive immunity in viral infection, after treating of betulinic acid in mouse lung. Based on the obtained results, it is suggested that betulinic acid can be the potential therapeutic agent for virus infection via anti-inflammatory activity.

Prodigiosin Production From Serratia sp. PDGS120915 Isolated From Daeyeon Stream Water in Busan (하천에서 분리한 Serratia sp. PDGS120915의 프로디지오신 생산)

  • Keunho Ji;Young Tae Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.377-384
    • /
    • 2024
  • Prodigiosin is a red pigment characterized by a common pyrrolylpyrromethane skeleton. It is produced by Serratia marcescens, Vibrio psychroerythrus, Hahella chejuensis, etc. Prodigiosin has been reported to possess anticancer, immunosuppressant, antifungal antimalarial, and algicidal activities. However, despite prodigiosin's diverse range of activities, its production rate is significantly low and biosynthesis conditions are difficult. Consequently, the selling price is high, and its usability is limited. This study aimed to increase the efficiency of prodigiosin production according to the culture conditions of Serratia. In this study, a bacterial strain PDGS120915 producing prodigiosin was isolated from lightly contaminated stream water in Busan and identified as a strain of Serratia sp. based on 16S rDNA gene sequence analysis and physiological characteristics. The reddish pigment from PDGS120915 was directly extracted using acidified ethanol, and a characterization analysis confirmed that it was a prodigiosin compound. The optimal conditions for pigment production were 25℃, pH 7, and 0% NaCl concentration for a duration of 14 hr. Furthermore, by treating carbon and nitrogen sources, such as fructose and beef extract, respectively, prodigiosin production increased approximately six-fold and four-fold. Among the minerals tested, 0.1% KCl was found to be the most effective for prodigiosin production. Moreover, casein was identified as the most suitable source for prodigiosin production.