• Title/Summary/Keyword: antiferromagnetic

Search Result 244, Processing Time 0.027 seconds

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

Positive Exchange Bias in Thin Film Multilayers Produced with Nano-oxide Layer

  • Jeon, Byeong-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.304-305
    • /
    • 2013
  • We report a positive exchange bias (HE) in thinmultilayered filmscontaining nano-oxide layer. The positive HE, obtained for our system results from an antiferromagnetic coupling between the ferromagnetic (FM) CoFe and the antiferromagnetic (AFM) CoO layers, which spontaneously form on top of the nano-oxide layer (NOL). The shift in the hysteresis loop along the direction of thecooling field and the change in the sign of exchange bias are evidence of antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. Our calculation indicates that uncompensated oxygen moments in the NOL results in antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. One of the interesting features observed with our system is that it displays the positive HE even above the bulk Neel temperature (TN) of CoO. Although the positive HEsystem has a different AFM/FM interfacial spin structure compare to that of the negative HE one, the results of the angular dependence measurements show that the magnetization reversal mechanism can be considered within the framework of the coherent rotation model.

  • PDF

Magnetic Properties and Relaxation of Vanadium Monolayer on Pd(001) Surface

  • Landge, Kalpana K.;Bialek, Beata;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.45-50
    • /
    • 2010
  • We investigated the magnetism of vanadium monolayers on a Pd(001) surface. The electronic structure and the magnetic properties of the V/Pd(001) system were determined with the use of the full-potential linearized augmented plane-wave method within the general gradient approximation. Three magnetic configurations were studied: non-, ferro-, and antiferromagnetic. From the total energy calculations, we found that the V/Pd(001) system is the most stable in the antiferromagnetic configuration. The importance of relaxation on the magnetic properties of the systems was also studied. It was found that the Pd(001) surface covered with a V monolayer undergoes considerable relaxation in which the spacing between Pd layers increases in all three magnetic configurations. Contrary to the Pd interlayer spacing, the distance between the V overlayer and the topmost Pd layer is reduced. The interlayer spacing between the V overlayer and the Pd surface layer is the largest for the antiferromagnetic configuration. In the relaxed antiferromagnetic structure, the magnitude of the calculated magnetic moments on the V atoms was $1.31\;{\mu}_B$. The presence of the vanadium monolayer does not affect the paramagnetic properties of the Pd(001) surface.

Studies of Effects of Current on Exchange-Bias: A Brief Review

  • Bass, J.;Sharma, A.;Wei, Z.;Tsoi, M.
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • MacDonald and co-workers recently predicted that high current densities could affect the magnetic order of antiferromagnetic (AFM) multilayers, in ways similar to those that occur in ferromagnetic (F) multilayers, and that changes in AFM magnetic order can produce an antiferromagnetic Giant Magnetoresistance (AGMR). Four groups have now studied current-driven effects on exchange bias at F/AFM interfaces. In this paper, we first briefly review the main predictions by MacDonald and co-workers, and then the results of experiments on exchange bias that these predictions stimulated.

AB INITIO CALCULATIONS OF STRONGLY CORRELATED ELECTRONS: ANTIFERROMAGNETIC GROUND STATE OF $UO_2$

  • YUN YOUNSUK;KIM HANCHUL;KIM HEEMOON;PARK KWANGHEON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.293-298
    • /
    • 2005
  • We have performed the density functional theory calculations of $UO_2$ using the spin-polarized generalized gradient approximation (SP-GGA) and the SP-GGA+U approach. The SP-GGA+U approach correctly predicts the insulating electronic structure with antiferromagnetic ordering, but the SP-GGA calculations predict metallic behavior. The cohesive properties obtained from the SP-GGA+U calculations are in good agreement with the available experimental results and previous calculations. The spin-polarized local density of states shows that the antiferromagnetic ordering of $UO_2$ is governed by 5f orbitals of uranium ion. Our calculations demonstrate that the strong correlation of U 5f electrons should be taken into account for a reliable description of $UO_2$ physics.

Density Functional Analysis of the Spin Exchange Interactions in VOSb2O4

  • Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2338-2340
    • /
    • 2012
  • The spin exchange parameters of $VOSb_2O_4$ were evaluated by performing energy-mapping analysis based on density functional calculations. The spin exchange interaction between the nearest-neighbor $V^{4+}$ ions is strongly antiferromagnetic while other interactions are negligible. Thus, the magnetic structure of $VOSb_2O_4$ is best described by a spin-1/2 Heisenberg antiferromagnetic chain with no spin frustration.

Syntheses of Piperidinyloxyl Diradicals Containing Squaric Acid Moieties and Their Magnetic Properties

  • Jeong Soo Kim;Lothar Dulog
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.465-468
    • /
    • 1993
  • Four compounds containing two 2,2,6,6-tetramethylpiperidin-1-yloxyl radicals were synthesized. They are all chemically bonded with squaric moieties. The diradical compounds show fundamentally the paramagnetic behaviors satisfying the theoretical magnetic susceptibility according to Curie's law. A diradical compound of salf-form 4 however shows a relatively strong antiferromagnetic interaction in comparison with other reported organic radicals. The antiferromagnetic interaction of diradical 4 approximates a value of J/k= -50 K by the theoretical analysis of its temperature dependence.