• Title/Summary/Keyword: antifeedant

Search Result 13, Processing Time 0.016 seconds

A Review on Control of Mites Using Neem, Chrysanthemum, Shrubby Sophora Extracts and their Effects on Natural Enemies (님, 제충국, 고삼 추출물의 응애류 방제와 천적에 미치는 영향에 대한 고찰)

  • Hyo Jung Kim;Do-ik Kim;Song Hee Han;Young Cheol Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.3
    • /
    • pp.193-205
    • /
    • 2023
  • Botanical insecticides derived from plant extracts exhibit repellent, antifeedant and enzyme-inhibiting activities against insect pests. Among such pests, phytophagous mites are major threats to horticultural crops. Botanical extracts derived from neem, chrysanthemum, and shrubby sophora are employed as field acaricides. These botanical extracts have low toxicities against natural enemies of the insect pests and, thus, are valuable in pest management. This review focuses on the potential for botanical extracts in the controls of mites, with comparisons of the spectrum of activity, the lethal dose and times and their mode of action. This information will enable better formulation of botanical extracts in integrated mite control.

Anti-Termite Activity of Azadirachta excelsa Seed Kernel and Its Isolated Compound against Coptotermes curvignathus

  • Morina ADFA;Khafit WIRADIMAFAN;Ricky Febri PRATAMA;Angga SANJAYA;Deni Agus TRIAWAN;Salprima YUDHA S.;Masayuki NINOMIYA;Mohamad RAFI;Mamoru KOKETSU
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.157-172
    • /
    • 2023
  • Azadirachta excelsa, is a plant belonging to the same genus as Indian neem (Azadirachta indica), and its use as a pesticide is reported by few studies. Despite being a different species, it is expected to have the same biopesticide potential as A. indica. Therefore, this study aims to investigate the anti-termite activity of n-hexane and methanol extracts of A. excelsa seed kernel at various concentrations against Coptotermes curvignathus. The methanol extract demonstrated greater termicidal activity than n-hexane at doses test of 2%, 4%, and 8%. It also showed 100% termite mortality on the third day of administering the 8% dose. According to the gas chromatography with mass spectrometry data, the putative main components of the n-hexane extract were hexadecanoic acid, ethyl ester (18.99%), 9,12-octadecadienoic acid (Z,Z)- (16.31%), and 9-octadecenal (16.23%). In contrast, the principal constituents of methanol extract were patchouli alcohol (28.1%), delta-guaiene (15.15%), and alpha-guaiene (11.93%). Furthermore, limonoids profiling of A. excelsa methanol extract was determined using Ultrahigh-performance liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry. The number of limonoids identified tentatively was fifteen, such as 6-deacetylnimbin, nimbolidin C, nimbolide, 6-acetylnimbandiol, 6-deacetyl-nimbinene, salannol, 28-deoxonimbolide, gedunin, nimbandiol, epoxyazadiradione, azadirone, 2',3'-dihydrosalannin, marrangin, nimbocinol, and azadirachtin. They were the same as those reported in the seed and leaves of A. indica, but its largest component in A. excelsa was 6-deacetylnimbin. As a result, the presence of these compounds may be responsible for the anti-termite activity of A. excelsa seed kernel extract. Additionally, column chromatography of methanol extract yielded 6-deacetylnimbin, which was found to be antifeedant and termiticide against C. curvignathus.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.