Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.
Technological advances are bringing autonomous vehicles to the ever-evolving transportation system. Anticipating adoption of these technologies by users is essential to vehicle manufacturers for making more precise production and marketing strategies. The research investigates regulatory focus and consumer innovativeness with consumers' adoption of autonomous vehicles (AVs) and to consumers' subsequent willingness to pay for AVs. An online questionnaire was fielded to confirm predictions, and regression analysis was conducted to verify the model's validity. The results show that a promotion focus does not have a significantly positive effect on the automation level at which consumers will adopt AVs, but a prevention focus has a significantly positive effect on conditional AV adoption. Consumer innovativeness, consumers' novelty-seeking have a significantly positive relationship with high and full AV adoption, and consumers' independent decision-making has a significantly positive effect on full AV adoption. The higher the level of automation at which a consumer adopts AVs, the higher the willingness to pay for them. Finally, using a neural network and decision tree analyses, we show methods with which to describe three categories for potential adopters of AVs.
Social welfare facilities are used by a wide range of local residents, including vulnerable populations such as the elderly, children, and people with disabilities. During emergencies like fires, confusion can arise as these individuals try to evacuate. Evacuation simulation results have shown that utilizing evacuation systems based on specific evacuation scenarios can significantly decrease the time required for evacuation compared to general evacuation procedures. By anticipating potential fires based on changes in social and facility environments, appropriate evacuation scenarios can be developed and applied to evacuation systems, thus contributing to the safety and security of individuals during emergencies. In conclusion, for social welfare facilities that serve a large number of people, it is necessary to expand the focus on performance-based design depending on the size of the facility, and to continuously develop and train for appropriate evacuation scenarios that align with changing facility environments.
Kim Dohyoung;Kim Hyunsuk;Lee Sunpyo;Oh Injong;Park Seungbum
Journal of Korea Society of Digital Industry and Information Management
/
v.19
no.4
/
pp.97-115
/
2023
In South Korea, chronic kidney disease(CKD) impacts around 4.6 million adults, leading to a high reliance on hemodialysis. For effective dialysis, vascular access is crucial, with decisions about vascular surgeries often made during dialysis sessions. Anticipating these needs could improve dialysis quality and patient comfort. This study investigates the use of Artificial Intelligence(AI) to predict the timing of surgeries for dialysis vessels, an area not extensively researched. We've developed an AI algorithm using predictive maintenance methods, transitioning from machine learning to a more advanced deep learning approach with Long Short-Term Memory(LSTM) models. The algorithm processes variables such as venous pressure, blood flow, and patient age, demonstrating high effectiveness with metrics exceeding 0.91. By shortening the data collection intervals, a more refined model can be obtained. Implementing this AI in clinical practice could notably enhance patient experience and the quality of medical services in dialysis, marking a significant advancement in the treatment of CKD.
Journal of the Korean Society of Industry Convergence
/
v.27
no.4_1
/
pp.769-780
/
2024
For an organization to survive and prosper, it is essential to continuously develop innovative products by proactively anticipating consumers' implicit requirements. The Kano model has become more useful since Sireli et al. (2007) and Tontini (2007) introduced a simple equation for determining the importance of characteristics by using the concept of Kano's Potential Customer Satisfaction Coefficient (PCSC). However, although several studies have utilized the PCSC concept to determine the importance of characteristics, it is surprising that the two equations have been accepted without any validation process. This study aims to propose a modified equation using PCSC and to conduct a validity test of the proposed equation, demonstrating its superiority over the previously suggested two equations, The author analysed 26 Kano related articles (27 cases), and the correlation coefficients were compared with those obtained from direct rating importance, which served as a comparative criterion. The results indicate that the proposed equation is valid for assessing characteristic importance and demonstrates significantly higher correlation coefficients with the direct method than those suggested by Tontini (2007) and Siireli et al. (2007). The proposed method offers advantages in terms of accuracy and survey duration over traditional methods that directly ask for relative importance (e.g., AHP by Saaty (1980)). Furthermore, the integration of the Kano model with IPA or QFD could enhance the accuracy and efficiency of research in determining the importance of characteristics.
Qingyun Gao;Yun Wang;Zhimin Zhou;Khalid A. Alnowibet
Smart Structures and Systems
/
v.33
no.5
/
pp.333-347
/
2024
There has been an increasing interest in the construction of smart buildings that can actively monitor and react to their surroundings. The capacity of these intelligent structures to precisely predict and respond to deflection is a crucial feature that guarantees both their structural soundness and efficiency. Conventional techniques for determining deflection often depend on intricate mathematical models and computational simulations, which may be time- and resource-consuming. Artificial intelligence (AI) algorithms have become a potent tool for anticipating and controlling deflection in intelligent structures in response to these difficulties. The term "deflection-aware smart structures" in this sense refers to constructions that have AI algorithms installed that continually monitor and analyses deflection data in order to proactively detect any problems and take appropriate action. These structures anticipate deflection across a range of operating circumstances and environmental factors by using cutting-edge AI approaches including deep learning, reinforcement learning, and neural networks. AI systems are able to predict real-time deflection with high accuracy by using data from embedded sensors and actuators. This capability enables the systems to identify intricate patterns and linkages. Intelligent buildings have the potential to self-correct in order to reduce deflection and maximize performance. In conclusion, the development of deflection-aware smart structures is a major stride forward for structural engineering and has enormous potential to enhance the performance, safety, and dependability of designed systems in a variety of industries.
Anticipating a wide range of morphological variations of arterial anatomy of foregut derivatives beyond the classical pattern, a precise understanding is pertinent to preoperative diagnosis, operative procedure and to avoid potentially devastating post-operative outcome during various traumatic and non-traumatic vascular insult of foregut. The study aimed to revisit the morphological details and update unusual configurations of arteries of foregut to establish clinico-anatomical correlations. This study described the detailed branching pattern of coeliac trunk (CT) as principal artery of foregut with source & course of hepatic, gastric, duodenal and pancreatic branches in 58 cadaveric dissections. Based on morphology, different types and subtypes were made. The descriptions were explained using figures and pertinent tables. Among classical branches of CT, splenic artery was found as most stable whereas other two branches were found to be most variable with missing common hepatic artery in 11 cases. In addition to classical trifurcation (65.52%), different types of bifurcation (12.07%) and tetrafurcations (22.41%) of CT were observed. Regarding variations of hepatic arteries (27.59%), both non-classical origin and accessory hepatic branches were found. In case of gastric branches, more variant origins were seen with right gastric (50%) as compared to left gastric artery (34.48%). Other morphological variations included non-classical origin of gastro-duodenal artery (18.96%) along with presence of accessory pancreatic (17.13%) and duodenal arteries (6.38%). Awareness of anatomical variations regarding circulatory dynamics of foregut is worth knowing in order to facilitate successful planning of surgery involving upper abdominal organs with least complications.
We have garnered 3,593 data of gas accidents reported for 12 years from 1995, and then analyzed the LPG vaporizer accidents according to their types and causes based on the classified database. According to the results the gas rupture has been the most common accident followed by the release, explosion and then fire accidents, the most frequent accident-occurring sub-cause is LPG check floater faults. In addition, we have applied the Poisson Probability Functions to predict the most-likely probabilities of fire, explosion, release and rupture with the LPG vaporizer in the upcoming 5 years. In compliance with Poisson Probability Functions results, in the item which occurs below 3 "LPG-Vaporizer-Fire", in the item which occurs below 5 "LPG-Vaporizer-Products Faults-Check Floater" and the item which occurs below 10 appeared with "LPG-Vaporizer-Products Faults". From this research we have assured the successive database updating will highly improve the anticipating probability accuracy and thus it will play a key role as a significant safety- securing guideline against the gas disasters.
In this study, two models due to the configuration of ripper at excavator are investigated by structural and fatigue analyses. The maximum stress and deformation are happened at the axis connected with the body of working device and the direct working part respectively. Model 1 is thought to have more structural durability than model 2. Fatigue life or damage in case of 'SAE bracket history' whose load change is most severest among non-uniform fatigue loads is shown to become most unstable. But life or damage in case of 'Sample history' whose load change is slowest among non-uniform fatigue loads is shown to become most stable. These study results can be effectively utilized with the design of ripper at excavator by anticipating and investigating prevention and durability against its fatigue damage.
The effect of maize hybrid (Suco and Dekalb 765, DK 765), maturity stage (milk, $R_3$ and 1/2 milk line, $R_5$) and animal diet (Diet 1: 70% lucerne hay+30% maize silage; Diet 2: 50% maize silage+20% sunflower meal+30% maize grain) on ruminal stover dry matter (DM) degradability was studied. Additionally, morphological and chemical plant composition was evaluated. Fodder samples ground at 2 mm were incubated in three Holstein steers (400 kg body weight) using the in situ technique. Ruminal degradation kinetics was studied and the effective degradability (ED) was estimated for an assumed kp of 5%/h. The in situ data was analyzed in a complete randomized block design with the animals as blocks. Significant interactions between hybrid${\times}$diet and maturity${\times}$diet on kinetic digestion parameters were detected. In Diet 1, hybrids did not differ in degradable fraction, kd or ED, although a minor difference (p<0.05) in the soluble fraction was found (25.5 and 23.2% for Suco and DK 765, respectively). In Diet 2, the DK 765 had greater degradable fraction (p<0.001) but smaller (p<0.01) kd than Suco, without differences in the soluble fraction or in ED. Anticipating the harvest increased ED of stover from 37.5% in $R_5$ to 44.6% in $R_3$ (average values across hybrids and diets) due to the increase (p<0.001) in the soluble fraction ($R_5$: 22.6%, $R_3$: 28.8%). It is concluded that hybrids had similar stover in situ DM degradability and that soluble fraction represent the main proportion of degradable substrates. Advancing the date of harvesting may not improve the in situ DM degradability of whole maize plant silage since the increase in stover quality is counteracted by the depression in the grain-to-stover ratio. The diet of the animal consuming silage might not improve stover utilization either.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.