• Title/Summary/Keyword: anti-thrombogenicity

Search Result 2, Processing Time 0.018 seconds

Anti-thrombogenicity and Surface Structure of a Poly(ester-ether) Consisting of Poly(L-lactic acid) and Poly(oxyethylene-co-oxypropylene) (Poly(L-lactic acid)와 Poly(oxyethylene-co-oxypropylene)을 포함한 생분해성 Poly(ester-ether)형 블록 공중합체의 항혈전성과 표면구조)

  • 이찬우;문성일;홍영기
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.385-390
    • /
    • 2001
  • The A-B-A type block copoly(ester-ether)s consisting of poly(L-lactic acid) (PLLA)(A) and poly(oxyethylene-co-oxypropylene)(B) were prepared to improve the mechanical properties and hydrolyzability of PLLA. The block copolymers showed an improved flexibility due to the incorporation of the soft segments. Then, the same copolymer has an improved anti-thrombogenicity probably due to the specific microphase separation structure in the surface. The AFM of the film of the block copolymer revealed that the surface was quite flat in comparison with that of PLLA. Therefore, the flatness of the surface may be related with the increased anti-thrombogenicity of the copolymer film.

  • PDF

Improved Biocompatibility of Intra-Arterial Poly-L-Lactic Acid Stent by Tantalum Ion Implantation : 3-Month Results in a Swine Model

  • Kim, Kangmin;Park, Suhyung;Park, Jeong Hwan;Cho, Won-Sang;Kim, Hyoun-Ee;Lee, Sung-Mi;Kim, Jeong Eun;Kang, Hyun-Seung;Jang, Tae-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.853-863
    • /
    • 2021
  • Objective : Biodegradable poly-L-lactic acid (PLLA) with a highly biocompatible surface via tantalum (Ta) ion implantation can be an innovative solution for the problems associated with current biodegradable stents. The purpose of this study is to develop a Taimplanted PLLA stent for clinical use and to investigate its biological performance capabilities. Methods : A series of in vitro and in vivo tests were used to assess the biological performance of bare and Ta-implanted PLLA stents. The re-endothelialization ability and thrombogenicity were examined through in vitro endothelial cell and platelet adhesion tests. An in vivo swine model was used to evaluate the effects of Ta ion implantation on subacute restenosis and thrombosis. Angiographic and histologic evaluations were conducted at one, two and three months post-treatment. Results : The Ta-implanted PLLA stent was successfully fabricated, exhibiting a smooth surface morphology and modified layer integration. After Ta ion implantation, the surface properties were more favorable for rapid endothelialization and for less platelet attachment compared to the bare PLLA stent. In an in vivo animal test, follow-up angiography showed no evidence of in-stent stenosis in either group. In a microscopic histologic examination, luminal thrombus formation was significantly suppressed in the Ta-implanted PLLA stent group according to the 2-month follow-up assessment (21.2% vs. 63.9%, p=0.005). Cells positive for CD 68, a marker for the monocyte lineage, were less frequently identified around the Ta-implanted PLLA stent in the 1-month follow-up assessments. Conclusion : The use of a Ta-implanted PLLA stent appears to promote re-endothelialization and anti-thrombogenicity.