• 제목/요약/키워드: anti-neuroinflammation

검색결과 72건 처리시간 0.018초

Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway

  • Xu, Xiang;Lu, Yu-Nan;Cheng, Jia-Hui;Lan, Hui-Wen;Lu, Jing-Mei;Jin, Guang-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Ma, Juan;Piao, Hu-Nan;Jin, Xuejun;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.62-70
    • /
    • 2022
  • Background: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.

급성 알코올 투여 백서의 신문혈 자극이 소교세포 활성에 미치는 영향 (Suppression of Microglial Activation by Acute Ethanol Administration through HT7 Stimulation)

  • 서수연;방세권;강석윤;조성진;최광호;류연희
    • Korean Journal of Acupuncture
    • /
    • 제41권2호
    • /
    • pp.33-42
    • /
    • 2024
  • Objectives : The sigma-1 receptor is implicated in stress, depression, psychostimulant sensitization, and addiction vulnerability. Prior studies have indicated that ethanol exposure modulates sigma-1 receptor activity within the Ventral Tegmental Area (VTA). Here, we explore the sub-mechanisms underlying sigma-1 receptor activity induced by HT7 (Shinmun) stimulation in behavioral alterations following acute ethanol (ETOH) administration. Methods : Male Wistar rats were investigated for pro- and anti-inflammatory markers after injection of ETOH (1 g/kg) using cytokine enzyme-linked immunosorbent assay (ELISA)s. After confirming that HT7 stimulation changed the total distance traveled in the open field test (OFT), protein changes in the Ventral tegmental area (VTA) were measured by Western blotting. The expression level of inducible nitric oxide synthase (iNOS) after administration of a sigma-1 receptor antagonist (dihydrobromide 1047; BD1047, 10 mg/kg i.p.) and Shenmen (HT7) stimulation was compared. Results : As a result, acute ETOH administration increased proinflammatory marker levels (TNF-𝛼 and IL-6). HT7 stimulation restored the total distance response after acute ethanol administration. In addition, in the VTA, the levels of a microglial marker (iNOS), sigma-1 receptor and protein kinase C, which are predicted to be involved in up- and downregulation, were restored by HT7 stimulation. In particular, HT7 stimulation modulates iNOS expression through effects similar to BD treatment. This study suggests that the stimulatory effect of HT7 may be driven by microglial activation. Conclusions : Microglial activity is regulated by sigma-1 receptor, and sigma-1 receptor activity is regulated by HT7 stimulation. Significantly, we demonstrate that HT7 stimulation ameliorates behavioral alterations induced by acute ETOH administration through microglial activation within the VTA.