• Title/Summary/Keyword: anti-jamming system

Search Result 79, Processing Time 0.023 seconds

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

Application and Performance Analysis of Machine Learning for GPS Jamming Detection (GPS 재밍탐지를 위한 기계학습 적용 및 성능 분석)

  • Jeong, Inhwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • As the damage caused by GPS jamming has been increased, researches for detecting and preventing GPS jamming is being actively studied. This paper deals with a GPS jamming detection method using multiple GPS receiving channels and three-types machine learning techniques. Proposed multiple GPS channels consist of commercial GPS receiver with no anti-jamming function, receiver with just anti-noise jamming function and receiver with anti-noise and anti-spoofing jamming function. This system enables user to identify the characteristics of the jamming signals by comparing the coordinates received at each receiver. In this paper, The five types of jamming signals with different signal characteristics were entered to the system and three kinds of machine learning methods(AB: Adaptive Boosting, SVM: Support Vector Machine, DT: Decision Tree) were applied to perform jamming detection test. The results showed that the DT technique has the best performance with a detection rate of 96.9% when the single machine learning technique was applied. And it is confirmed that DT technique is more effective for GPS jamming detection than the binary classifier techniques because it has low ambiguity and simple hardware. It was also confirmed that SVM could be used only if additional solutions to ambiguity problem are applied.

Analysis on Design Factors of the Optimal Adaptive Beamforming Algorithm for GNSS Anti-Jamming Receivers

  • Jang, Dong-Hoon;Kim, Hyeong-Pil;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • This paper analyzes the design factors for GNSS anti-jamming receiver system in which the adaptive beamforming algorithm is applied in GNSS receiver system. The design analysis factors used in this paper are divided into three: antenna, beamforming algorithm, and operation environment. This paper analyzes the above three factors and presents numerical simulation results on antenna and beamforming algorithm.

On the Performance of Time-Hopping Systems under Hostile Jamming Environments (다양한 재밍 환경에서 시간도약 시스템 성능 분석)

  • Jung, Hyoyoung;Lee, Jong-Hwan;Kim, Kiseon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.115-123
    • /
    • 2018
  • In this paper, we consider the applicability of time-hopping(TH) systems for anti-jamming(AJ) communication. We first briefly summarize fundamentals of TH systems and several common jamming scenarios that have been considered in the literature. We then analyze the AJ performance of TH systems under those common jamming environments. From our simulation results, we reveal that among narrow band, partial band, broadband, and sweep jamming, partial band and sweep jamming are the best ones from jammer perspective. For the partial band jamming case, we show that the most effective bandwidth ratio and location are 50 % and 2.5-3.5 Ghz, respectively. For the sweep jamming case, we illustrate that the AJ performance of the TH system is enhanced when the sweep duration approaches to the bit duration. In addition, we pointed out that the most efficient jamming bandwidth ratio is 1/2. Finally, our results show that the TH-BPSK system greatly outperforms the TH-PPM counterpart.

Design of a High Dynamic-Range RF ASIC for Anti-jamming GNSS Receiver

  • Kim, Heung-Su;Kim, Byeong-Gyun;Moon, Sung-Wook;Kim, Se-Hwan;Jung, Seung Hwan;Kim, Sang Gyun;Eo, Yun Seong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.115-122
    • /
    • 2015
  • Global Positioning System (GPS) is used in various fields such as communications systems, transportation systems, e-commerce, power plant systems, and up to various military weapons systems recently. However, GPS receiver is vulnerable to jamming signals as the GPS signals come from the satellites located at approximately 20,000 km above the earth. For this reason, various anti-jamming techniques have been developed for military application systems especially and it is also required for commercial application systems nowadays. In this paper, we proposed a dual-channel Global Navigation Satellite System (GNSS) RF ASIC for digital pre-correlation anti-jam technique. It not only covers all GNSS frequency bands, but is integrated low-gain/attenuation mode in low-noise amplifier (LNA) without influencing in/out matching and 14-bit analogdigital converter (ADC) to have a high dynamic range. With the aid of digital processing, jamming to signal ratio is improved to 77 dB from 42 dB with proposed receiver. RF ASIC for anti-jam is fabricated on a 0.18-μm complementary metal-oxide semiconductor (CMOS) technology and consumes 1.16 W with 2.1 V (low-dropout; LDO) power supply. And the performance is evaluated by a kind of test hardware using the designed RF ASIC.

Performance Analysis of Linear Array Antenna for Anti-jamming GPS Systems (항재밍 GPS 시스템을 위한 선형 어레이 안테나 성능 분석)

  • Kim, Kiyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, I design a linear array antenna simulator for anti-jamming GPS systems and perform various performance analysis by simulation. First, I generate simulated transmission signals through the analysis of GPS satellite signal structure, and analyze SNR(Signal to Noise power Ratio) performance of linear array antenna according to number of arrays under noise environments. In addition, I analyze the performance of the anti-jamming beam pattern using MMSE(Minimum Mean Square Error) signal processing method, and also analyze the anti-jamming performance considering antenna calibration problem when there are different delays between arrays.

Performance Evaluation of a Vector-Tracking-Loop for GNSS Jamming Effect Mitigation Under Static and Dynamic Conditions

  • Cheon, Wang-Seong;Ji, Gun-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.113-125
    • /
    • 2018
  • Since the global positioning system receivers on the surface of the Earth use satellite signals sent from a remote distance and the intensity of received signals is weak, they are vulnerable to jamming. This paper implements a vector-tracking loop (VTL)-based global navigation satellite system (GNSS) receiver algorithm as an anti-jamming technique and compares the performance of VTL-based receivers with that of scalar-tracking loop (STL) that is used in general GNSS receivers at various jamming environments and a vehicle's dynamics. The simulation results shows that VTL is more robust against jamming than STL in all operating environments.

GPS Jamming Techniques and Anti-Jamming GPS Technologies (GPS 재밍 기법과 항재밍 GPS 기술)

  • Jo, In-hwa;Kim, Hyeong-suk;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.573-575
    • /
    • 2015
  • Positioning system using satellite GPS is used at positioning, navigation, acquisition time information and other various field and taking an important part precision guided weapon such as missile. But commercial code(C/A code) do not have ECCM. Therefore commercial code is vulnerable to various jamming techniques and noise jamming from near station can attack even the encrypted military code(P code) GPS. In this paper, GPS jamming techniques, North Korean GPS jamming cases and anti-jamming GP S technologies are surveyed and described.

  • PDF

Analysis of Anti-Jamming Techniques for Satellite Navigation Systems (위성항법시스템을 위한 항재밍 기술 분석)

  • Kim, Ki-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1216-1227
    • /
    • 2013
  • GNSS(Global Navigation Satellite System) is now being widely used in both civilian and military applications where accurate positioning and timing information are required and it is considered as a representative convergence technique in IT-Military application techniques. However, GNSS has low sensitivity level of GNSS receivers and is vulnerable to jamming signal, since the signals come from the satellite located at approximately 20,000 Km above the earth. The studies for the anti-jamming techniques in military applications have been passively performed in the domestic, because the information related GNSS are dependent on the countries that have GNSS. In this paper, we show the effect of jammer ERP by analyzing the link budget of GPS J/S power as a function of distance between jammer and receiver. Also, we categorize the anti-jamming techniques based on the functional block diagram of GNSS receiver structure and analyze the recent anti-jamming GNSS products and their technologies developed in domestic and foreign countries.

A Scheme for Improvement of Positioning Accuracy Based on BSS in Jamming Environments (재밍 환경에서 BSS 기반 측위 정확도 향상 기법)

  • Cha, Gyeong Hyeon;Song, Yu Chan;Hwang, Yu Min;Sang, Lee Jae;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.58-63
    • /
    • 2015
  • Due to GPS signal's vulnerability of jamming attack, various enhancement techniques are needed. Among variety of techniques, we focused on GPS receiver's anti-jamming techniques. There are many anti-jamming methods at GPS receivers which include filtering methods in time domain, frequency domain and space domain. However, these methods are ineffective to signals, which include both jamming and noise. To solve the problem, this paper proposes a jamming separation scheme by using a BSS method in a jamming environment. As separated GPS signals include noise after the jamming separation method, it is difficult to receive accurate GPS signals. For this reason, this paper also proposes a wavelet de-noising method to effectively eliminate noise. Experimental results of this paper are based on a real field test data of an integrated GPS/QZSS/Wi-Fi positioning system. At the end, the simulation result demonstrates its superiority by showing improved positioning accuracy.