• Title/Summary/Keyword: anti-corrosion properties

Search Result 121, Processing Time 0.019 seconds

A Study on Characteristics of Inconel 625 for Petroleum Application by FCAW Process ; Effect of Shield Gases Change Influence on a Mechanical Properties (석유시추용 인코넬 625강의 FCAW 용접에 관한 연구 ; 보호가스 변화가 기계적 성질에 미치는 영향)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.96-100
    • /
    • 2004
  • Inconel 625 is useful in a variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good low and high temperature mechanical strength. Rencently this material has also been widely used in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldings for this material are readily produced by commonly used processes. How, not all processes are applicable to this material group of Ni-alloys. Metallurgical or the unavailability of matching, position or suitable welding processes produce a lower quality. Nowadays, the flux cored wire is developed and applied for increased productivity in several welding positions, including the vertical position. In this study, the weldability and weldment characteristics(mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases$(80\%Ar+20\%CO2,\;50\%Ar+50CO2,\;100CO2)$ in view of welding productivity.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel (오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향)

  • Kim, Seong-Jong;Lee, Seung-Jun;Chong, Sang-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.484-492
    • /
    • 2013
  • With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Exposure Environment (I) (해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (I))

  • 신도철;김영웅;김용철;김동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.51-56
    • /
    • 2002
  • Protection against salt attack in seawater is obtained by using a dense, quality concrete with a low water-cement ratio, and a components appropriate for producing concrete having the needed salt resistance. The objective of this study is to evaluate the feature of corrosion with using the various concrete materials under marine exposure environment. According to the test results, slag powder and anti -corrosion inhibitor showed high chloride resistance effect. Also concre crack have an influence on corrosion of steel in spite of mixed design for salt resistance concrete. The requirement for low permeability is essential not only to delay the effect of salt attack, but also to afford adquate protection to reinforcement with admixtures.

  • PDF

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

An Experimental Study on the Improvement of City Gas Buried Double Piping Integrity (도시가스 매설이중배관 건전성 향상에 관한 실험적 연구)

  • Lim, Hyung-Duk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.757-763
    • /
    • 2020
  • City gas buried pipes are managed by corrosion protection to prevent corrosion. In the case of the press-in section, the double pipe and the main pipe may cause corrosion under the influence of stray current, which can shorten the life of the pipes. In addition, if the insulator is filled in the press-in section, the press-in section itself is a single structure, and can be directly affected by external impact, and when the surrounding ground subsidence occurs, the stress may be concentrated, resulting in serious consequences. In this study, a serration-type shock absorber in the form of a sliding support was proposed as a new buried double piping construction method using EPS. The serration-type shock absorber can contribute to the improvement of the integrity of the buried double piping, as it can utilize the gas piping's own ductility and stress distribution characteristics with proper anti-corrosion management and shock-absorbing material properties by preventing contact inside the buried double pipe. However, for application to ground piping, there remains a task to supplement the vulnerability against fire due to the characteristics of EPS materials.

Fundamental Study on Cathodic Protection and Material Development as Erosion-Control Methods of Oceanic Centrifugal Pump(2) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구(2))

  • Lee, Jin Yeol;Im, U Jo;O, In Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.92-92
    • /
    • 1996
  • Recently, with the rapid development in the oceanic systems such as the oceanic structures and vessel, there occurs much interest in the impingement erosion-corrosion. In this paper, Cu-metal was tested by using of erosion apparatus with water-jet type and was investigated under the behaviour of impingement erosion-corrosion according to various environmental conditions, and the properties of Cu-metal were evaluated through the measurement by weight loss, weight loss rate, protective efficiency. The results were compared with those obtained using Cu-metal applied to cathodic protection and Cu-alloys added to Zn or Al-metal. As a basis of those results, the best protective efficiencies could be taken as using cathodic protection method and Cu-alloy with Al & Zn material addings, and will be suggested as the fundamental data of the anti-impingement erosion-corrosion on Cu-metal of impeller material for oceanic centrifugal pump.

Fundamental Study on Cathodic Protection and Material Development as Erosion - Control Methods of Oceanic Centrifugal Pump(2) (해상용 원심펌프 임펠러의 침식억제법으로 음극방식 및 재료개발에 관한 기초연구 (2))

  • 이진열;임우조;오인호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.24-31
    • /
    • 1996
  • Recently, with the rapid development in the oceanic systems such as the oceanic structures and vessel, there occurs much interest in the impingement erosion-corrosion. In this paper, Cu-metal was tested by using of erosion apparatus with water-jet type and was investigated under the behaviour of impingement erosion-corrosion according to various environmental conditions, and the properties of Cu-metal were evaluated through the measurement by weight loss, weight loss rate, protective efficiency. The results were compared with those obtained using Cu-metal applied to cathodic protection and Cu-alloys added to Zn or Al-metal. As a basis of those results, the best protective efficiencies could be taken as using cathodic protection method and Cu-alloy with Al & Zn material addings, and will be suggested as the fundamental data of the anti-impingement erosion-corrosion on Cu-metal of impeller material for oceanic centrifugal pump.

  • PDF

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.