• 제목/요약/키워드: anti-cancer drugs

검색결과 300건 처리시간 0.025초

ZAS3 promotes TNFα-induced apoptosis by blocking NFκB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2

  • Shin, Dong-Hyeon;Park, Kye-Won;Wu, Lai-Chu;Hong, Joung-Woo
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.267-272
    • /
    • 2011
  • ZAS3 is a large zinc finger transcription repressor that binds the ${\kappa}B$-motif via two signature domains of ZASN and ZASC. A loss-of-function study showed that lack of ZAS3 protein induced accelerated cell proliferation and tumorigenesis. Conversely, gain-of-function studies showed that ZAS3 repressed $NF{\kappa}B$-activated transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Based on these observations, we hypothesize that ZAS3 promotes apoptosis by interrupting anti-apoptotic activity of $NF{\kappa}B$. Here, we present evidence that upon $TNF{\alpha}$ stimulation, ZAS3 inhibits $NF{\kappa}B$-mediated cell survival and promotes caspase-mediated apoptosis. The inhibitory effect of ZAS3 on $NF{\kappa}B$ activity is mediated by neither direct association with $NF{\kappa}B$ nor disrupting nuclear localization of $NF{\kappa}B$. Instead, ZAS3 repressed the expression of two key anti-apoptotic genes of $NF{\kappa}B$, TRAF1 and TRAF2, thereby sensitizing cells to $TNF{\alpha}$-induced cell death. Taken together, our data suggest that ZAS3 is a tumor suppressor gene and therefore serves as a novel therapeutic target for developing anti-cancer drugs.

비소세포 폐암환자에서 Docetaxel 투여 중 발생한 아급성 피부 홍반루푸스 1예 (A Case of Docetaxel Induced Subacute Cutaneous Lupus Erythematosus)

  • 신정아;허철웅;권지은;김형중;안철민;장윤수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제66권5호
    • /
    • pp.380-384
    • /
    • 2009
  • 비소세포폐암의 일차치료로 사용되고 있는 항암치료제인 docetaxel은 세포주기 정체를 통한 세포자멸을 야기하는 약제로 이로 인한 누클리오좀 유리가 약제유발 홍반루푸스의 원인으로 추정되고 있으나 실제 docetaxel로 야기된 아급성 피부 홍반루푸스의 증례는 지금까지 전세계적으로 4명의 증례 보고만이 있을 뿐이며 국내에서는 아직까지 보고된 바가 없다. 저자들은 비소세포폐암 환자에서 docetaxel과 cisplatin 병합 항암 화학요법 도중 발생한 아급성 피부 홍반루푸스 1예를 경험하였기에 이를 보고하는 바이다.

Tumor Imaging by Monoclonal Antibodies Labeled with Radioactive Metal Ions

  • Endo, K.;Sakahara, H.;Nakashima, T.;Koizumi, M.;Kunimatsu, M.;Ohta, H.;Furukawa, T.;Ohmomo, Y.;Arano, Y.;Yokoyama, A.;Okada, K.;Yoshida, O.;Hosoi, S.
    • 대한핵의학회지
    • /
    • 제18권2호
    • /
    • pp.77-85
    • /
    • 1984
  • Monoclonal antibodies have become widely investigated in the Nuclear Oncology, especially in the radioimmunosassay of tumor markers and in vivo radioimmunoimaging of cancer. However, there are numerous factors as to whether radioimmunoimaging will ultimately successful. For imaging of tumors, metallic radionuclides such as In-111, Ga-67, Tc-99m have favorable nuclear properties than widely used I-131. These radioistopes have characteristics of the useful radiation for imaging, convenient short half-lives and the simple and rapid radiolabeling of monoclonal antibodies by using bifunctional chelaing agents. The obtained chelate-tagged antibodies are quite stable both in vitro and in vivo, without interfering antibody activities and animal experiments provided a good basis for its clinical applicability for the radioimmunoimaging of cancer. Much attention has also been given to the possibility, only beginning to be exploited, of the specific treatment of malignant neoplasms with these agents. Although specific antibody has not been developed that is uniquely specific for cancer alone and there are still many questions to be answered and problems to be overcome before radioimmunoimaging can be successfully used in ptients with cancer, these methods can be applied to the coupling of monoclonal antibodies with anti-neoplastic drugs or radionuclides suitable for internal radiation therapy of cancer.

  • PDF

Low-dose Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibition of EGFR Mutation-positive Lung Cancer: Therapeutic Benefits and Associations Between Dosage, Efficacy and Body Surface Area

  • Hirano, Ryosuke;Uchino, Junji;Ueno, Miho;Fujita, Masaki;Watanabe, Kentaro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.785-789
    • /
    • 2016
  • A key drug for treatment of EGFR mutation-positive non-small cell lung cancer is epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). While the dosage of many general anti-tumor drugs is adjusted according to the patient body surface area, one uniform dose of most TKIs is recommended regardless of body size. In many cases, dose reduction or drug cessation is necessary due to adverse effects. Disease control, however, is frequently still effective, even after dose reduction. In this study, we retrospectively reviewed the characteristics of 26 patients at Fukuoka University Hospital between January 2004 and January 2015 in whom the EGFR-TKI dose was reduced with respect to progression free survival and overall survival. There were 10 and 16 patients in the gefitinib group and the erlotinib group, respectively. The median progression-free survival in the gefitinib group and the erlotinib group was 22.4 months and 14.1 months, respectively, and the median overall survival was 30.5 months and 32.4 months, respectively. After stratification of patients by body surface area, the overall median progression-free survival was significantly more prolonged in the low body surface area (<1.45 m2) group (25.6 months) compared to the high body surface area (>1.45 m2) group (9.7 months) (p=0.0131). These results indicate that low-dose EGFR-TKI may sufficiently control disease without side effects in lung cancer patients with a small body size.

Curcumin Analogue A501 induces G2/M Arrest and Apoptosis in Non-small Cell Lung Cancer Cells

  • Xia, Yi-Qun;Wei, Xiao-Yan;Li, Wu-Lan;Kanchana, Karvannan;Xu, Chao-Chao;Chen, Da-Hui;Chou, Pei-Hong;Jin, Rong;Wu, Jian-Zhang;Liang, Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6893-6898
    • /
    • 2014
  • Curcumin and its analogues have been reported to exert anti-cancer activity against a variety of tumors. Here, we reported A501, a new curcumin analogue. The effect of A501 on cell viability was detected by MTT assay, the result showed that A501 had a better inhibiting effect on the four non-small cell lung cancer (NSCLC) cells than that of curcumin. Moreover, Colony forming experiment showed A501 significant restrained cell proliferation. Flow cytometry displayed A501 can cause G2/M arrest and induce apoptosis. Western blotting showed that A501 decreased the expression of cyclinB1, cdc-2, bcl-2, while increased the expression of p53, cleaved caspase-3 and bax. In conclusion, curcumin analogues A501 played antitumor activity by inhibiting cell proliferation and inducing apoptosis of NSCLC cells. And it was likely to be a promising starting point for the development of curcumin-based anticancer drugs.

건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향 (Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell)

  • 안진영;고성규;고흥
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

Cancer cell-specific anticancer effects of Coptis chinensis on gefitinib-resistant lung cancer cells are mediated through the suppression of Mcl-1 and Bcl-2

  • JAE HWAN KIM;EUN SUN KO;DASOM KIM;SEONG-HEE PARK;EUN-JUNG KIM;JINKYUNG RHO;HYEMIN SEO;MIN JUNG KIM;WOONG MO YANG;IN JIN HA;MYUNG-JIN PARK;JI-YUN LEE
    • International Journal of Oncology
    • /
    • 제56권6호
    • /
    • pp.1540-1550
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), gefitinib, is an effective therapeutic drug used in the treatment of non-small cell lung cancers (NSCLCs) harboring EGFR mutations. However, acquired resistance significantly limits the efficacy of EGFR-TKIs and consequently, the current chemotherapeutic strategies for NSCLCs. It is, therefore, necessary to overcome this resistance. In the present study, the anticancer potential of natural extracts of Coptis chinensis (ECC) against gefitinib-resistant (GR) NSCLC cells were investigated in vitro and in vivo. ECC inhibited the viability, migration and invasion, and effectively induced the apoptosis of GR cells. These effects were associated with the suppression of EGFR/AKT signaling and the expression of anti-apoptotic proteins, Mcl-1 and Bcl-2, which were overexpressed in GR NSCLC cells. Combination treatment with ECC and gefitinib enhanced the sensitivity of GR cells to gefitinib in vitro, but not in vivo. However, ECC increased the survival of individual zebrafish without affecting the anticancer effect to cancer cells in vivo, which indicated a specific cytotoxic effect of ECC on cancer cells, but not on normal cells; this is an important property for the development of novel anticancer drugs. On the whole, the findings of the present study indicate the potential of ECC for use in the treatment of NSCLC, particularly in combination with EGFR-TKI therapy, in EGFR-TKI-resistant cancers.

Role of PI3-Kinase/Akt Pathway in the Activation of Etoposide-Induced $NF-{\kappa}B$ Transcription Factor

  • Choi Yong-Seok;Park Heon-Yong;Jeong Sun-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.391-398
    • /
    • 2006
  • $NF-{\kappa}B$ is a transcription factor involved in the innate immunity against bacterial infection and inflammation. It is also known to render cells resistant to the apoptosis caused by some anticancer drugs. Such a chemoresistance of cancer cells may be related to the activation of $NF-{\kappa}B$ transcription factor; however, the mechanism of activation is not well understood. Here, we demonstrate that a chemotherapeutic agent, etoposide, independently stimulates the $I{\kappa}B{\alpha}$ degradation pathway and PI3-kinase/Akt signaling pathway: The classical $I{\kappa}B{\alpha}$ degradation pathway leads to the nuclear translocation and DNA binding of p65 subunit through $IKK{\beta}$ kinase, whereas the PI3-kinase/Akt pathway plays a distinct role in activating this transcription factor. The PI3-kinase/Akt pathway acts on the p50 subunit of the $NF-{\kappa}B$ transcription factor and enhances the DNA binding affinity of the p50 protein. It may also explain the role of the PI3-kinase/Akt pathway in the anti-apoptotic function of $NF-{\kappa}B$ during chemoresistance of cancer cells.

수지상세포에서 GM-CSF의 항암제유도 세포사멸 방지효과에 관한 연구 (Granulocyte-macrophage colony stimulating factor protects dendritic cells from anticancer drug-induced apoptosis)

  • 주홍구
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.607-613
    • /
    • 2003
  • Dendritic cells (DCs) play an essential role in a variety of immune reactions involving $CD4^+$ T cells and have been used to enhance tumor-specific immune responses. Immunosuppression in patients with cancer includes the downregulation of function and number of DCs. Although DCs have been studied, the apoptosis of Des induced by anticancer drugs for chemotherapy remains largely uncharacterized. This study demonstrated that GM-CSF protects DCs from 5-fluorouracil (5-FU) or mitomycin C-induced apoptosis. After 6 - 10 days culture, DCs were characterized by specific surface marker, CD11c and MHC class II. MTT assay revealed that GM-CSF significantly enhanced the viability of DCs treated with 5-FU or mitomycin C. The percentage of dead cells of DCs was determined by cell size using FACScan and GM-CSF was clearly effective. However, GM-CSF did not increase the expression of MHC class II on viable DCs gated, suggesting that GM-CSF may differentially regulate critical factors involved in the function of DCs. For the quantitative analysis of apoptosis, annexin V-FITC staining was performed. 5-FU induced the apoptosis of DCs and GM-CSF significantly protects DCs from 5-FU-induced apoptosis. Taken together, the results in this study that GM-CSF has an anti-apoptosis effect on DCs may provide patients with cancer with clinical benefits to overcome the immunosuppression induced by the decrease of number and functional insufficiency of DCs.

혈관신생 분자핵의학 영상 (Molecular Nuclear imaging of Angiogenesis)

  • 이경한
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.