• Title/Summary/Keyword: anti roll tank

Search Result 23, Processing Time 0.025 seconds

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.

A Study on the Performance of Active Anti-Rolling Tank Stabilizer System (능동형 횡동요 감쇠장치의 성능에 관한 연구)

  • Choi, Chan-Moon;Ahn, Jang-Young;Lee, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.138-143
    • /
    • 2004
  • This experimental paper deals with the performance of tanks that are turned the active A.R.T(Anti-Rolling Tank) when the fluid transfers from wing tank to the opposite tank by the power developed by the automatic control system (INTERING Stabilizer), which was installed in the fishery training ship T/S. A - RA (G/T:990 tons) of Cheju National University. In this paper, the author has tested the performance of INTERING Stabilizer for the signals obtained by the inclinometer in irregular waves and compared with the results obtained in passive mode operation at stop and at various ship speeds. The performances of the system were confirmed the results as follows through the tests: 1. The average amplitude and significant roll (${\pi}$1/3) of the passive and active mode operations in the condition of stoped engine and underway were obtained 8.30$^{\circ}$, 4.37$^{\circ}$, 8.30$^{\circ}$, 4.37$^{\circ}$, and 5.01$^{\circ}$, 4.36$^{\circ}$, 5.50$^{\circ}$, 5.10$^{\circ}$, respectively. 2. The rates of performance of active mode operations were carried out during a sea trial in the condition of stop engine and underway resulted in 47.5%, 12.7%, respectively, therefore the active mode operation estimated to be improved more than passive mode operation. 3. Active - A.R.T by INTERING Stabilizer didn't affect the amplitude of pitching.

A Study on Roll Reduction Devices for FPSOs (FPSO의 횡요 감쇠 장치에 대한 고찰)

  • PARK IN-KYU;YANG JIN-HO;SHIN HYUN-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.30-35
    • /
    • 2004
  • Several roll motion reduction devices are reviewed and suggested for the application in FPSO. The firstly suggested solution is the shape of the bilge. The next is a bilge keel. The last suggestion is the ART (anti-rolling tank). Typical U-tube type ART is designed for a FPSO and examined extensively by model experiment. The model section was made of transparent acryl. Free decay test, forced oscillation test and wave test were carried out at a two-dimensional wave flume. U-tube type ART is effective only when the natural periods of ART and ship are same. Therefore, the divided U-tube type ART with split plate is suggested for the reduction of the roll motion of a FPSO over the wide range of the roll period.

  • PDF

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • 윤현규;이경중;이창민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.285-290
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion. In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled. While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted. Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

  • PDF

A Study on Viscous Damping System of a Ship with Anti-Rolling Pendulum (안티롤링 진자를 장치한 선박의 점성감쇠계 해석에 대한 연구)

  • Park, Sok-Chu;Jang, Kwang-Ho;Yi, Geum-Joo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.365-372
    • /
    • 2017
  • The rolling motion of a floating body makes crews and passengers exhausted and/or applies forces to the structure to cause damage; it might even upset the body. Therefore, almost all ships are equipped with bilge keels for anti-rolling; in special cases, an anti-rolling tank(ART) or fin stabilizer or gyroscope could be installed. But an ART requires a large capacity to install it, and a fin stabilizer and gyroscope need great costs to install and also many expenses to operate. The authors suggest the use of an anti-rolling pendulum(ARP), and they showed that the ARP is effective to reduce rolling by experiments and via a Runge-Kutta analysis. This paper introduces the linearized 2 degrees of freedom with a viscous damping system for a ship equipped with ARP; it also shows the validation of the linearized analysis for the ship's roll motion. The paper proposes an optimum ARP on the basis of the justified model. The case of the 7.7kg model with ship 20g ARP of a mass ratio of 0.26%, is the most effective for reducing roll motion. The paper shows the ARPs with various mass ratios are effective for reducing the roll motion of a ship by free decaying roll experiments.

Modeling and Simulation of a Ship with Anti-Rolling Devices in Waves (자세제어장비를 장착한 선박의 파랑중 운동 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Lee, Chang-Min
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.347-352
    • /
    • 2004
  • Wave exciting force and moment generate the motions of a ship in waves. Since ship motion exerts the negative influences on a crew's operability, the safety of cargos, passenger's comfort, etc, the anti-rolling devices may be required to reduce such motion In this paper, the dynamics of the anti-rolling devices such as passive and active moving weight stabilizer and anti-rolling tank, and fin stabilizer are mathematically modeled While the effect of the motion of the anti-rolling device on a ship was taken into consideration in roll mode only in the past, the 6 DOF coupled equations of motion between a ship and the anti-rolling devices are constituted Finally the motion of a ship with anti-rolling devices in waves is simulated through the developed simulation program.

A Study on the Anti-Rolling Control System of Small Ship (소형선박의 횡요방지 제어장치 연구)

  • Kim, Si-Young;Yoo, Jae-Bok;Moon, Chul-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.184-202
    • /
    • 1999
  • The roll damping characteristics of the three models of a small fishing(3 ton class fishing vessel), such as the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll and head waves tests in calm water in a towing tank with the various forward speeds, initial angles and OG's. The experimental results are compared with the numerical results of mathematical modelings by the energy method for these three models and the energy dissipation patterns are also compared. And the wave length variations are also included. The experimental results are compared with the numerical results of mathematical modelings by the energy method for these three models and the energy dissipation patterns are also compared. The roll damping moment of the models is increased for zero speed cases, but as the speed increases, the effect of the waves on the roll damping of the models with the additional devices is negligible due to the much increased damping caused by the lift increase.

  • PDF

Development of Control System for Anti-Rolling Tank of Ships with Fault Detection Capability (고장진단 기능을 갖는 선박 횡동요 감요 장치 용 제어시스템 개발)

  • Won, Moon-Cheol;Ryu, Sang-Hyun;Choi, Kwang-Sik;Jung, Yun-Ho;Lew, Jae-Moon;Ji, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.64-71
    • /
    • 2010
  • This paper summarizes the development of an ART control system panel with a touch screen and sensors to measure the roll and roll rate of ships. The control system hardware consists of two micro-processors, analog and digital I/O circuits, various relay circuits, etc. Sensor fusion and moving cross algorithms are implemented to accurately estimate the roll angle and roll period. In addition, the control system adopts a fault detection algorithm to inform users of ART system faults. A touch screen in the control panel can display the ART system states and faults. The performance of the developed system was verified on real sea trials.

An optimal bilge keel design to reduce the rolling of the offshore large purse seiner (근해 대형 선망선의 횡동요 경감을 위한 최적의 빌지킬 설계)

  • Kim, Yong-Jig;Kang, Il-Kwon;Park, Byung-Soo;Ham, Sang-Jun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The purpose of this paper is to examine the roll damping characteristics by bilge keels on the fishing vessel. Unlike other degree of freedom motions, roll motion is highly nonlinear. However the quantitative evaluation of roll damping combined with waves is very important for the fishing vessel. To reduce roll motion, roll motion stabilizers such as a bilge keel is used due to easy made and cheap cost rather than anti-rolling tank and fin-stabilizer. Authors paid attention to the shape of bilge keel and waves to grasp the roll damping for the fishing vessel and studied about the difference of tendencies of roll angle following the shapes of bilge keel. The model ship was the offshore large purse seiner and four types of bilge keel were used. The data from the experiments were provided and analyzed to investigate the rolling characteristics of the model ship being affected by the wave height, wave period and bilge keel shape. The results of the study showed that three types of the bilge keel have little effective, but only one has an effect on the roll damping. So bilge keel shape and its attachment method need to be a future study for the practical use in fishing vessel.

A Study on the Anti-rolling Effect of Stem Sub-body in the Stepped-Hull Planing Boat (스텝 붙이 활주형 모터보트 선미부가물의 횡요저감효과에 관한 연구)

  • Kang, Byung-Yoon;Park, Chung-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.84-89
    • /
    • 2008
  • It is hard to find experimental data for a model test of small high-speed planning boats. It is difficult to verify the performance seen in a model test for a high-speed boat because the ship-model scale-ratio is very small and the flow velocity of the circulating water channel and the X-carriage speed of the towing tank are restricted. Therefore most hull-form designs for high-speed small boats depend on the sea-trial test result for similar boats or evaluation through numerical calculations. This study investigated the anti-rolling effect of the stern sub-body in a 50-knot doss planning boat. To carry out this work, new model test procedures were set up in the actual sea. Using this method, the anti-rolling effect of the stern sub-body was investigated. A stern sub-body attached to a planning boat was proved to be effective in reducing the roll and pitch angle.