• Title/Summary/Keyword: anti bacterial effect

Search Result 313, Processing Time 0.025 seconds

Antimicrobial effects of curcumin against pathogenic bacteria in fish (어류의 병원성 세균에 대한 curcumin의 항균효과)

  • Heo, Gang-Joon;Kang, Jin-Hui;Shin, Gee-Wook
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • The present study was to investigate anti-microbial effects of curcumin on major bacterial pathogens for farmed fish, such as Aeromonas hydrophila, A. salmonicida subsp. masoucida, A. salmonicida subsp. salmonicida, Edwardsiella tarda, Vibrio vulnificus, V. paraheamolyticus using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. In disc diffusion test, curcumin exhibited concentration-dependent antimicrobial activities to all bacteria pathogens used in the study. Antimicrobial effects of curcumin was found differently depending on bacterial species when determined by MIC or MBC tests. For examples, E. tarda and A. hydrophila was respectively the most sensitive bacterium for bacteriostatic and bacteriocidal effect of curcumin. Collectively, curcumin could be a potential natural drug for controlling pathogenic bacteria in the aquaculture industry.

The Effects of IDS(Indongsoyeom-bang) Treatment on the Hematological and Cytopathological Alterations in Non-Bacterial Prostatitis Rat Model (인동소염방(忍冬消炎方)이 만성 비세균성 전립선염 Rat 모델에서 혈액 및 세포조직의 변화에 미치는 영향)

  • Lee, Jong-Bin;Hwang, Seock-Yeon;Cho, Chung-Sik
    • Journal of Haehwa Medicine
    • /
    • v.20 no.1
    • /
    • pp.91-104
    • /
    • 2011
  • Background : Although chronic non-bacterial prostatitis is increasing, it is hard to treat effectively. In western medicine, antimicrobials drug, ${\alpha}$-adreno-ceptor antagonists, anti-inflammatory drugs, tricyclic antidepressants and anticholinergic agents are used commonly, but chronic prostatitis/chronic pelvic pain syndromes is confusing and frustrating for urologist. IDS(Indongsoyeom-bang) is used in treatment of chronic prostatitis/chronic pelvic pain syndromes. And it is reported that GLS(Gleditsiae spina) and TOF(Toosendan fructus) components of IDS have significant effect on protection of the glandular epithelial cells. Objective : In this study was conducted to investigate the therapeutic effects and action machanism of IDS in the rat model of non-bacterial prostatitis induced by castration and testosterone treatment. Methods : We observed six experimental objects of normal group, control group, testosterone group, and IDS 50 mg/kg, 200mg/kg, 400mg/kg group. Rats were treated with 17 ${\beta}$-estradiol after castration for induction of experimental non-bacterial prostatitis, which is similar to human chronic prostatitis in histophatological profiles. IDS and testosterone were administered as an experimental specimen and a positive control, respectively. The prostates were evaluated by histological parameters including the epithelial score and epithelio-stromal ratio for glandular damage. Also, the prostates were observed by Hematological alterations of WBC, RBC, hemoglobin and platelet. Results : While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation, the rats treated with IDS-50 showed a diminished range of the tissue damage. Epithelial score was improved in IDS than that of the control. The epithelio-stromal ratio was lower in IDS when compared to that of the control. Also, the examination of bloods were not observed hematological change. Conclusion : These finding suggests that IDS may protects the glandular epithelial cells. We concluded that IDS could be a useful remedy agent for treating chronic non-bacterial prostatitis.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Anti-inflammatory Effects of the Water Extract of Phyllostachys Folium via NF-κB Inhibition (죽엽 열수추출물의 염증억제 효과)

  • Son, Jin Won;Park, Sang Mi;Jung, Ji Yun;Hwangbo, Min;Cho, Il Je;Jung, Tae Young;Park, Chung A;Kim, Sang Chan;Jee, Seon Young
    • Herbal Formula Science
    • /
    • v.24 no.4
    • /
    • pp.259-269
    • /
    • 2016
  • Objectives : Phyllostachys Folium is leaves of Phyllostachys nigra var. henesis $S_{TAPF}$. In the East Asian traditional medicine, the herb has been used to treat nasal bleeding, dysuria, epilepsy and etc. The present study was conducted to evaluate the anti-inflammatory effects of the Phyllostachys Folium water extracts (PFE) in vitro and in vivo model. Methods : Cell viability was measured by MTT assay after the treatment of PFE and NO production was monitored by measuring the nitrite content in culture medium. iNOS, COX-2, $I{\kappa}B$, $p-I{\kappa}B{\alpha}$ amd $NF{\kappa}B$ were detected by immunoblot analysis, and levels of cytokine were analyzed by sandwich ELISA kit. Anti-edema effect of PFE was determined in the carrageenan-induced paw edema model in rats. Results : LPS increased NO and cytokines levels compared with control, these increases were attenuated by PFE. In addition, LPS-induced pro-inflammatory proteins such as iNOS, COX-2 were down regulated by PFE. These anti-inflammatory effect of PFE results from inhibition of phosphorylation of $I{\kappa}B$ and translocation of $NF-{\kappa}B$. Conclusion : These results show that PFE has some anti-inflammatory effects which might play a role in gram-negative bacterial infection inflammation and $NF{\kappa}B$ activated diseases.

Adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T-cell lines into SCID mice in experimental atherosclerosis (실험적 동맥경화증에서 Porphyromonas gingivalis 열충격단백-항원결정부위-특이성 T-세포주의 SCID mice내로의 주입효과에 대한 연구)

  • Choi, Jeom-Il;Witztum, Joseph
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Bacterial heat shock protein has been one of the components that are responsible to induce autoimmune disease mechanisms in the pathogenesis of atherosclerosis due to high level of homology in sequence with human counterpart. This mechanism may explain how bacterial infectious disease, such as periodontal disease, might contribute to the acceleration of the disease process of atherosclerosis. Porphyromonas gingivalis which is a major periodontal pathogenic bacterial species, has been implicated as one of the pathogenic bacteria playing the role in this context. The present study has been performed to evaluate the anti-atherosclerotic effect of adoptive transfer of Porphyromonas gingivalis heat shock protein epitope-specific T cell lines into severe combined immunodeficiency (SCID) mice. Peptide no. 15 with amino acid sequence VKEVASKTND-specific T cell line was selected for the transfer. When experimental atherosclerosis was induced in SCID mice adoptively transferred either by the T cell lines (experimental group) or by non-specific mouse T cells (control group), there was no significant difference in the severity and extent of the atherosclerosis induced by hypercholesterol diet.

Inhibitory Activity of Sedum middendorffianum-Derived 4-Hydroxybenzoic Acid and Vanillic Acid on the Type III Secretion System of Pseudomonas syringae pv. tomato DC3000

  • Kang, Ji Eun;Jeon, Byeong Jun;Park, Min Young;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.608-617
    • /
    • 2020
  • The type III secretion system (T3SS) is a key virulence determinant in the infection process of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Pathogen constructs a type III apparatus to translocate effector proteins into host cells, which have various roles in pathogenesis. 4-Hydroxybenozic acid and vanillic acid were identified from root extract of Sedum middendorffianum to have inhibitory effect on promoter activity of hrpA gene encoding the structural protein of the T3SS apparatus. The phenolic acids at 2.5 mM significantly suppressed the expression of hopP1, hrpA, and hrpL in the hrp/hrc gene cluster without growth retardation of Pst DC3000. Auto-agglutination of Pst DC3000 cells, which is induced by T3SS, was impaired by the treatment of 4-hydroxybenzoic acid and vanillic acid. Additionally, 2.5 mM of each two phenolic acids attenuated disease symptoms including chlorosis surrounding bacterial specks on tomato leaves. Our results suggest that 4-hydroxybenzoic acid and vanillic acid are potential anti-virulence agents suppressing T3SS of Pst DC3000 for the control of bacterial diseases.

The Anti-Bacterial Activity and Anti-Inflammatory Effect of Ethanol Complex Extracts of Safflower and Mother Wort (사플라워와 마더워트 등 에탄올복합추출물의 항균활성과 항염증 효과)

  • Hyun Kyoung Kim;Yungi Lee;Subin Choi;DO Wan Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.717-724
    • /
    • 2023
  • we are investigated the anti-inflammatory effects of Safflower and Mother wort Ethanol Complex Extracts(SEC) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of SEC(500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by Safflower and Mother wort Ethanol Complex Extracts were observed in the following. Safflower and Mother wort Ethanol Complex Extracts inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that Safflower and Mother wort Ethanol Complex Extracts exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Safflower and Mother wort Ethanol Complex Extracts. Therefore, Safflower and Mother wort Ethanol Complex Extracts could be regarded as a potential source of natural anti-inflammatory agents.

The Cytotoxic Effect of Oral Wet Wipes on Gingival Cells (시판 중인 구강청결티슈의 세포 독성 관찰)

  • Jung, Im-hee;Park, Ji Hyeon;Lee, Min Kyeng;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.18 no.2
    • /
    • pp.76-84
    • /
    • 2018
  • Wet wipes are being increasingly used because of their convenience. Particularly, oral wet wipes are useful for regular cleaning of a baby's mouth after birth. Therefore, the consumption of oral wet wipes has increased over the past few years and a variety of products are commercially available. However, product information on safety is not sufficiently provided and still raises doubts regarding adverse effects. To confirm the safety of wet wipes as an oral hygiene item and provide information for their use, we investigated the cytotoxicity of oral wet wipes and verified the underlying mechanism. The anti-bacterial effect of oral wet wipes was analyzed using the disk diffusion method. The cytotoxic effects of oral wet wipes were observed based on morphological changes using microscopy and determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in gingival epithelial cells and gingival fibroblasts. Evaluation of apoptosis by oral wet wipes was explored using propidium iodide flow cytometric analysis and a terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) assay. Apoptosis-related molecules were also analyzed using western blotting. Five types of oral wet wipes were tested, and two products from Fisher-Price and Dr. Kennedy revealed strong cytotoxic effects on gingiva epithelial cells and gingiva fibroblasts, although they also showed intense anti-bacterial effects on oral bacteria. Cell cycle arrest in the G2/M phase and apoptosis were observed based on treatment of extracts from Fisher-Price and Dr. KENNEDY. Relatively high TUNEL levels, reduction of proliferating cell nuclear antigen and cyclin-dependent kinase 4 expression, and fragmentation of poly (ADP-ribose) polymerase were also elucidated. These results suggest that commercial oral wet wipes could exert cytotoxic influences on oral tissue, although there are anti-bacterial effects, and careful attention is required, especially for infants and toddlers.

Genotoxicity on Structural Derivatives of Sophoricoside, a Component of Sophora Japonica, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Jung, Sang-Hun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.179-188
    • /
    • 2005
  • To develop the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, VI-3, VII-3, VIII-3, VII-20 and VII-20 (sodium salt) were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Single cell gel electrophoresis (Comet) assay, mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. Through the primary screening using the comet assay, we could choose the first candidates of sophoricoside derivatives with no genotoxic potentials as JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt). Also JSH-VII-3, VII-20 and VII-20 (sodium salt) are non-mutagenic in MOLY assay, while JSH-II-3 is mutagenic at high concentration with the presence of metabolic activation system in both comet assay and MOLY assay. The selected derivatives (JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt) are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. From results of chromosomal aberration assay, 6 h treatment of JSH-VI-3, VII-3 and VII-20 (sodium salt) were not revealed clastogenicity both in the presence and absence of S-9 mixture. Therefore, we suggests that JSH-VI-3, VII-3, VII-20 and VII-20 (sodium salt), as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen. To process the development into new anti-inflammatory drug of these derivatives, further investigation will need.