• 제목/요약/키워드: anthropogenic contamination

검색결과 75건 처리시간 0.026초

Hydrogeochemistry of groundwaters in Boeun Area, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Kim, Kyoung-Ho;Kweon, Jang-Soon;Sung, Ig-Hwan;Lee, Byeong-Dae
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.519-519
    • /
    • 2003
  • We performed a hydrochemical study on a total of 89 bedrock groundwaters collected from preexisting wells (30 to 300 m deep) in the Boeun area. Hydrochemical data showed significant variations in the area, due to varying degrees of anthropogenic pollution. The waters were mostly enriched in Ca and HCO$_3$ but locally contained significant concentrations of anthropogenic constituents in the general order of Cl >NO$_3$>SO$_4$. In particular, about 11% of the examined wells exceeded the drinking water standard with respect to nitrate. We consider that aquifers in the area are locally highly susceptible to the contamination related to agricultural activities. Diagrams showing the relationships between the summation of cations (∑cations) and the concentration of several anions with different origin (natural versus anthropogenic) were used to estimate the relative role of anthropogenic contamination. A good correlation was observed for the relationship between ∑cations and bicarbonate, indicating that water-rock interaction (namely, hydrolysis of silicate minerals) is most important to control the water quality. Thus, we made an assumption that the equivalent of dissolved cations for a water should be equal to the alkalinity, if the chemistry were controlled solely by a set of natural weathering reactions. If we excluded the equivalent quantities of cations and bicarbonate (natural origin) from the acquired data for each sample, the remainder therefore could be considered to reflect the degree of anthropogenic contamination. Finally, we performed a multiple regression approach for hydrochemical data using the ∑cations as a dependent variable and the concentration data of each anion (natural or anthropogenic) as an independent variable. Using this approach, we could estimate the relative roles of anthropogenic and natural processes. Rather than the conventional evaluation scheme based on water quality criteria, this approach will be more useful and reasonable for the evaluation of groundwater quality in a specific region and also can be used for planning appropriate protection and remedial actions.

  • PDF

서해 연안지역 천부지하수의 수리지구화학 : 연안 대수층의 해수 혼입에 관한 연구 (Hydrogeochemistry of shallow groundwaters in western coastal area of Korea : A study on seawater mixing in coastal aquifers)

  • 박세창;윤성택;채기탁;이상규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제7권1호
    • /
    • pp.63-77
    • /
    • 2002
  • Salinization is an important environmental problem encountered in coastal aquifers. In order to evaluate the salinization problem in the western coastal area of Korea, we have performed a regional hydrochemical study on shallow well groundwaters (N=229) collected within 10 km away from the coastline. The concentrations of analyzed solutes are very wide in range, suggesting that the hydrochemistry is controlled by several processes such as water-rock interaction, seawater mixing, and anthropogenic contamination. Based on the graphical interpretation of cumulative frequency curves for some hydrochemical parameters (esp., $Cl^{-}$ and ${NO_3}^-$), the collected water samples were grouped into two major populations (1) a background population whose chemistry is predominantly affected by water-rock interaction, and (2) an anomalous population which records the potential influences by either seawater mixing or anthropogenic pollution. The threshold values obtained are 34.7 mg/l for $Cl^{-}$ and 37.2 mg/l for ${NO_3}^-$, Using these two constituents, groundwaters were further grouped into four water types as follows (the numbers in parenthesis indicate the percentage of each type water) : (1) type 1 waters (38%) that are relatively poor in $Cl^{-}$ and ${NO_3}^-$, which may represent their relatively little contamination due to seawater mixing and anthropogenic pollution; (2) type 2 waters (21%) which are enriched in $Cl^{-}$, Indicating the considerable influence by seawater mixing; (3) ${NO_3}^-$-rich, type 3 waters (11%) which record significant anthropogenic pollution; and (4) type 4 waters (30%) enriched in both $Cl^{-}$ and ${NO_3}^-$, reflecting the effects of both seawater mixing and anthropogenic contamination. The results of the water type classification correspond well with the grouping on a Piper's diagram. On a Br x $10^4$versus Cl molar ratio diagram, most of type 2 waters are also plotted along or near the seawater mixing line. The discriminant analysis of hydrochemical data also shows that the classification of waters into four types are so realistic to adequately reflect the major process(es) proposed for the hydrochemical evolution of each water type. As a tool for evaluating the degree of seawater mixing, we propose a parameter called 'Seawater Mixing Index (S.M.I.)’ which is based on the concentrations of Na, Mg, Cl, and $SO_4$. All the type 1 and 3 waters have the S.M.I. values smaller than one, while type 2 and type 4 waters mostly have the values greater than 1. In the western coastal area of Korea, more than 21% of shallow groundwaters appear to be more or less affected by salinization process.

경포호의 항생제 내성 세균 조사 (Survey of Antibiotic Resistant Bacteria in Lake Gyeongpo, Korea)

  • 한덕기
    • 한국환경농학회지
    • /
    • 제42권3호
    • /
    • pp.169-176
    • /
    • 2023
  • The emergence and spread of antibiotic-resistant bacteria have been increasing with anthropogenic contamination. Understanding the prevalence and distribution of these resistant bacteria in environments is crucial for effectively managing anthropogenic pollutants. Lake Gyeongpo in the Gangwon Province of South Korea is known for its diverse ecological features and human interactions. The lake is exposed to pollutants from nonpoint sources, including urban areas, agricultural practices, and recreational activities, which can introduce antibiotics and foster antibiotic resistance in bacteria. The present study investigates Lake Gyeongpo as a potential reservoir for antibiotic-resistant bacteria in a natural ecosystem. A total of 203 bacterial isolates were collected from six sampling locations in Lake Gyeongpo during May, July, and November 2022. Most isolates were taxonomically identified as Pseudoalteromonas, Bacillus, Shewanella, and Vibrio spp.; their abundance showed a spatiotemporal distribution. An antibiotic susceptibility test was conducted on 75 isolates using the disk diffusion method with six drugs according to the CLSI guideline; 42 isolates were resistant to one or more antibiotics. Among these, 15 isolates were identified as multidrug resistant bacteria. This finding suggests the potential anthropogenic impact on Lake Gyeongpo and provides valuable insights into the dissemination of antibiotic resistance caused by anthropogenic pollutants.

울릉도의 항생제 내성균 조사 (Survey of Antibiotic Resistant Bacteria in Ulleungdo, Korea)

  • 이준형;홍혜원;한덕기
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.344-354
    • /
    • 2022
  • BACKGROUND: Although antibiotics have contributed to treatment of bacterial infection, the antibiotic abuse can lead to antibiotic resistant bacteria. Impact of human activities on distribution of antibiotic resistance has been intensively issued and occurrence of antibiotic resistant bacteria in contaminated environments would not be a surprise. Nonetheless, anthropogenic contamination with the dissemination of antibiotic resistance along uncontaminated environments has been less considered. The aim of this study is to investigate antibiotic resistant bacteria across Ulleungdo, known as antibiotic resistance free and anthropogenic pollution free environment in Rep. of Korea. METHODS AND RESULTS: Antibiotic resistant bacteria in coastal seawater of Ulleungdo were investigated in July 2021. Antibiotic susceptibility test using the disk diffusion method was applied with six drugs according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Total 43 bacterial isolates were tested and 20 isolates among of them showed multidrug resistance. Particularly, the number and ratio of resistant bacteria were relatively high in a densely populated area of Ulleungdo. The bacterial communities were investigated using 16S rRNA gene metabarcoding approach in the coastal seawater and soils of Ulleungdo. In the bacterial communities, Firmicutes were selectively distributed only in seawater, suggesting the possibility of anthropogenic contamination in coastal seawater of Ulleungdo. CONCLUSION(S): We found antibiotic resistant bacteria in a populated area of Ulleungdo. The occurrence of antibiotic resistant bacteria in Ulleungdo seems to result from the recent anthropogenic impact. Consistent monitoring of antibiotic resistant bacteria in the uncontaminated environment needs to considered for future risk assessment of antibiotics.

통계지표를 활용한 부산지역 조선소 주변 토양 내 중금속 오염조사 연구 (A Geo-statistical Assessment of Heavy Metal Pollution in the Soil Around a Ship Building Yard in Busan, Korea)

  • 최정식;전수경
    • 해양환경안전학회지
    • /
    • 제24권7호
    • /
    • pp.907-915
    • /
    • 2018
  • 다양한 산업분야에서 중금속의 사용이 증가할수록, 중금속으로 인한 환경오염과 생물학적 위해성에 대한 우려의 목소리가 커지고 있다. 통계 지수는 배경농도 값과의 비교를 통해 중금속 오염농도를 정규화 시킴으로써 토양 오염의 정도를 수치화하고, 단계 별로 오염 정도를 판단 할 수 있어 많이 사용된다. 본 연구에서는 농축인자(Enrichment factor, EF), 축적 계수(accumulation index), 잠재적 생물학적 위험 지표(potential ecological risk index)등을 이용하여 중공업 근처 토양 내 중금속 오염가능성을 평가하였다. 연구결과, 중금속의 오염 정도는 정부 가이드라인에 비하여 낮은 수준이었으나, 특정 위치에서 아연, 구리, 납 등의 중금속 오염이 관찰 되었다. 농축인자, 축적계수, 생물학적 위험 지표를 통해 일부 토양 내 중금속 오염이 우려할 수준이며, 주변에 존재하는 인위적 오염원에 의한 오염가능성이 있음을 확인하였다. 연구대상지의 추가 시료채취 및 추정되는 오염원의 시료 확보 후, 동위원소 분석 및 x-ray 기반 분석을 통해 오염원 추적연구가 필요할 것으로 판단된다.

한강 저질중의 중금속 오염도 평가 방법에 관한 연구 (Studies on the Evaluation Method of Heavy Metal Contamination Degree in the Han River)

  • 어수미;박성배
    • 한국환경보건학회지
    • /
    • 제18권1호
    • /
    • pp.47-57
    • /
    • 1992
  • This study was performed to evaluate contamination degree of heavy metals in sediments of Han River, compared with other nation's evaluation method. The results were as follows 1. The contamination Ratio calculation method by heavy metal concentration in differnt fraction size has a limitation to apply to all of the areas of Han river because of its characteristics of sediment. As a result, this method applied to only 4 areas of Pal Dang, Wang Sook Chon, Uk Chon, and Bul Kwang Chon, and Contmination Ratio of heavy metals in those areas were relatively low of below 3. So it's considered that those areas have less contaminated from anthropogenic contaminants. 2. The Contamination Ratio calculation method by heavy metal concentration in different areasthat of upper area to be background level-has a limitation also to apply to Han river. But it is considered that this method was relatively suitable to apply, so it should be prepared evaluation standand method for them. Contamination ratio from background level as Pal Dang area were most high in An Yang Chon. So it must be prepared purification and control measure at An Yang Chon.

  • PDF

Status of Community Drinking Water in Korea and Implications for Appropriate Management

  • Lee, Jin-Yong;Park, Youngyun;Kim, Nam-Ju;Jeon, Woo-Hyun
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권6호
    • /
    • pp.56-68
    • /
    • 2013
  • Community drinking water (CDW), mostly naturally flowing groundwater, plays important roles in supplying drinking water for urban and rural residents in Korea. Over 1,600 CDW facilities are distributed throughout the country, many of them situated in the outskirts of metropolitan cities. A large proportion of Korean people have become dependent on CDW for drinking due to a distrust of piped water's quality and a strong belief in the special medicinal effects of some CDWs. However, administrative and official management and the control of CDW facilities have been inadequate when compared with the strict examination and control of commercial bottled water, which is physically treated groundwater from deep bedrock aquifers. In this study, even though signs of anthropogenic contamination were not generally found, the tested chemical compositions of selected CDWs featured high enrichment of some constituents including Ca, Mg, Na, and HCO3 with natural origins such as water-rock interactions. Careless consumption of particular CDWs, which has no scientific basis, will not guarantee health improvement. Consequently, more intensive management of CDW facilities and a long-term interdisciplinary examination of the health effects of CDWs are needed to effectively protect people's health.

대도시 지표수와 퇴적물의 환경지구화학적 특성: 중금속 및 VOCs 오염 (Environmental Geochemical characteristics of urban runoff and sediments from gully pot along the main roads in urban area: Heavy metals and VOCs contamination)

  • 이평구;박성원;전치완;신성천
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.129-135
    • /
    • 2000
  • Four types of land use were selected for sampling and study with different characteristics of heavy metal contamination during the period from August 1998 to June 2000. A series of studies have been carried out concerning the physicochemical characteristics of the sediments settling down in a gully pot to evaluate the contamination of Pb, Zn, Cd, Co, Cr and Cu. An examination of six elements indicated that Zn, Cu and Pb were the heavy metals severely impacted by anthropogenic input in Seoul. An assessment of 60 volatile organic compounds (VOCs) in urban runoff and ground water was conducted based on samples collected from 31 sites and 12 wells, respectively, in Seoul City. The higher levels of alkyl benzenes in urban runoff indicated that Seoul areas were mainly contaminated through traffic sources.

  • PDF

시화호의 중금속 오염과 산화-환원 상태의 공간적 차이 (Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea)

  • 현상민;김은수;팽우현
    • 한국환경과학회지
    • /
    • 제13권5호
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.