• 제목/요약/키워드: anthracite-bituminous coal blend

검색결과 8건 처리시간 0.023초

유동층 연소로에서 유$cdot$무연탄 혼합 연소시 대기오염물질 배출에 관한 연구 (A Study on Contaminant Emission and Combustion of Anthracite-Bituminous Coal Blend in a Fluidized Bed Coal Combustor)

  • 조상원;정종현;손병현;김영식;오광중
    • 한국환경보건학회지
    • /
    • 제22권3호
    • /
    • pp.28-36
    • /
    • 1996
  • The objects of this study were to investigate emissions of air pollutant the particles as well as the combustibility of the low grade domestic anthracite coal and imported high-calorific bituminous coal in the fluidized bed coal combustor. The production of air pollution from anthracite-bituminous coal blend combustion in a fluidized bed coal combustor was evaluated. The effects of air velocity and anthracite fraction on the reaching time of steady state condition was also evaluated. We used coal samples the domestic low grade anthracite coal with heating value of 2,010 kcal/kg and the imported high grade bituminous coal with heating value of 6,520 kcal/kg. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 0.3 m/s which was the fastest. It has been found that $O_2$ and $CO_2$ concentration were reached steady state at about 100 minute. As the height of fluidized bed becomes higher, the concentration s of $SO_2$ and $NO_x$ mainly increased. The concentration of freeboard was the highest and emission concentration was diminished. Also, as anthracite fraction increased, the emission of $SO_x$ concentration was increased. But, it has been found that the variation of $NO_x$ concentration with anthracite fraction was negligible and the difference of emission concentration according to air flow rates was negligible, too. It has been found that $O_2$ concentration decreased and $CO_2$ concentration increased as the height of fluidized bed increased. As anthracite fraction increased, the mass of elutriation particles increased, and $CO_2$ concentration decreased. Also, as air velocity increased, $O_2$ concentration decreased and $CO_2$ concentration increased. Regardless-of anthracite fraction and flow rate, the combustible weight percentage in elutriation particles were high in the case of fine particles.

  • PDF

Co-combustion of Bituminous Coal with Anthracite in a Down-firing, 200 MW Boiler

  • Park, Ho Young;Baek, Se Hyun;Kim, Young Joo;Kim, Tae Hyung;Kim, Hyun Hee;Lim, Hyun Soo;Park, Yoon Hwa
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.93-97
    • /
    • 2015
  • The combustion tests for Korean anthracite-bituminous coal blend were carried out in the 200 MW utility boiler. The burning characteristics of the blend were studied with a thermogravimetric analyzer (TGA). From the observation of TGA burning profiles, it was found that the presence of bituminous coal in the blend appeared to enhance the reactivity of anthracite in the higher temperature region, indicating certain interactions between the two coals. The plant test showed the boiler operation was reasonably stable with somewhat poor combustion efficiency, and some modification of the combustion environment in the furnace is necessitate for the further stable plant operation.

유동층 연소로에서 유, 무연탄 혼합연소시 탈황에 관한 연구 -천연석회석을 이용한 황산화물 제어- (A study on Desuifurization by Anthracite-Bituminous coal blend combustion in a fluidized bed combustor -A desulfurization using natural limestone-)

  • 조상원;민병철;정종현;전영화;김대영;정덕영
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.102-108
    • /
    • 1997
  • It has been studied that SO$_2$ removal efficiency of anthracite-bituminous coal blend combustion in a fludized bed coal combustor. The objectives of this study were to investigate SO$_2$ removal characteristics of coal blend combustion with Ca/S, anthracite fraction, bed temperature, and limestone size. The experimental results were presented as follows First, the effect of the desulfurization by the dia size of limestone was great and SO$_2$ removal efficiency was highest in limestone dia 631 $\mu$m. Second, as air velocity increased, the desulfurization rate decreased a little. But the difference of the desulfurization rate according to air velocity was not too large. As the height of fluidized bed combustor increased regardless of air velocity, SO$_2$ concentration tends to increase largely. Third, as Ca/S mole ratio incresed, SO$_2$ desulfurization rate incresed rapidly up to Ca/S mole ratio 3 while the desulfurization rates did not increse too largely in the range of more than the level. Forth, the bed temperature had a great effect on the desulfurization rate and the desulfurization rate tended to increase slightly as anthracite fraction increased.

  • PDF

유동층 연소로에서 유.무연탄 혼합 연소법을 이용한 국내산 저질 무연탄의 활용에 관한 연구 (A Study on the Use of Low-Grade Domestic Anthracite by Anthracite - Bituminous Coal Blend Combustion in a Fluidized Bed Combustor)

  • 정종현;조상원
    • 한국환경과학회지
    • /
    • 제6권3호
    • /
    • pp.267-276
    • /
    • 1997
  • It has been studded that combustion and the production of air pollution of anthracite - bituminous coal blend In a fluidized bed coal combustor, The objects of thIns study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and Imported h19h calorific bltununous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010kca1/kg and the Imported high grade bituminous coal with beating value of 6,520kca1/kg. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300sc1h which was the fastest. It has been found that $O^2$ and $CO^2$ concentration were reached steady state at about 100 minute. It has been found that $O^2$ concentration decreased and $CO^2$ concentration increased as the height of fluidlzed bed Increased. It was found that splash zone was mainly located from 25cm to 35cm above distributor. Also, as anthracite traction Increased, the mass of elutrlatlon particles Increased, and $CO^2$ concentration decreased. As gk flow rate Increased,$O^2$ concentration decreased and $CO^2$ concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approldmately high In the case of One Particles. As anthracite traction and k now rate Increased, elutriation ratio Increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was Increased. Regardless of anthracite fraction, size distribution of Ued material from discharge was almost constant. Over bed temperature 85$0^{\circ}C$ and excess air 20% , the difference of combution efficiencies were little. It is estimate that the combustion condition In anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 85$0^{\circ}C$, the excess air 20%.

  • PDF

석탄을 이용하여 제조한 상수처리용 활성탄과 상업용 활성탄의 물성특성 분석 (Analysis of physical properties of activated carbon for water purification made by using coal and commercial activated carbon)

  • 최동훈;김종수;안철우;이철승;박진식
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, the physical properties of coal-based(bituminous, anthracite·bituminous) activated carbon were compared with those of four different commercial activated carbon used for water treatment. In case of bituminous coal and blend coal, the results of SEM analysis indicated that more pore was extended and shaped in activation process than carbonization process. The results of BET analysis indicated that specific surface area of P Co. activated carbon was larger than the others, and C Co. activated carbon, S Co. activated carbon and anthracite + bituminous was similar. Therefore, adsorption capacities and breakthrough time of anthracite + bituminous regarded similar to C Co. activated carbon.

유동층을 이용한 유,무연탄 혼합 연소로에서 대기오염물질 생성과 연소효율 연구 (A Study on Production of Air Pollutants and Combustion Efficiency of Anthracite-Bituminous Coal Blend Combustor Using Fluidized Bed)

  • 조상원;민병철
    • 공업화학
    • /
    • 제8권3호
    • /
    • pp.517-523
    • /
    • 1997
  • 본 연구는 유동층연소로에서 유,무연탄 혼합연소시 대기오염물질 발생과 연소효율에 관하여 실험하였으며, 실험결과는 다음과 같다. 유동층연소로 높이가 증가할수록 이산화황과 질소산화물의 농도는 증가하는 것으로 나타났으며, 무연탄 혼합비가 증가할수록 이산화황의 농도는 증가하였으나 질소산화물농도는 큰 변화가 없었다. 무연탄 혼합비가 증가할수록 비산유출율도 증가하였고 주입 가연성분에 대한 유출 가연성분비도 증가하였다. 또한, 무연탄 혼합비에 관계없이 비산유출입자의 평균입경에 따른 미연분 함량은 미세입자에서 대체로 높게 나타났다. 한편, 연소효율은 층온도 $850^{\circ}C$, 과잉공기 20% 이상에서 큰 차이를 보이지 않았으므로 유속 0.3m/s, 층온도 $850^{\circ}C$, 과잉공기비 20%의 조건으로 혼합연소시키는 것이 적절한 것으로 나타났다.

  • PDF

유동층연소로에서 유,무연탄 혼합연소시 탈황에 관한 연구 --- 폐제지슬러지를 이용한 황산화물 제어 --- (A study on desulfurization by anthracite - bituminous coal blend combustion in a fluidized bed combustor --- A desulfurization using waste paper sludge ---)

  • 조상원;오광중
    • 청정기술
    • /
    • 제3권1호
    • /
    • pp.96-105
    • /
    • 1997
  • 본 연구는 유,무연탄 혼합 유동층 석탄연소로에서 폐제지슬러지를 탈황제로 사용하였을 경우 석회석 입자크기, 주입공기 유속, Ca/S 몰비, 무연탄비, 층온도 등에 따른 $SO_2$ 제거 효율에 관해 연구하였으며, 실험결과는 다음과 같다. 폐제지슬러지의 입자크기는 탈황율에 매우 큰 영항을 주는 것으로 나타났으며, 입자크기 $1016{\mu}m$ 일 때 가장 높은 탈황율을 보였고, 주입되는 공기의 유속변화에 따른 탈황율에는 큰 차이가 없었다. Ca/S 몰비가 증가할수록 탈황율도 증가하였으며, Ca/S 몰비 3까지는 급격히 탈황율이 증가하였으나 3이상에서는 큰 차이가 없었으므로 Ca/S 몰비는 3이 적절한 것으로 나타났다. 또한, 층온도는 탈황율에 큰 영향을 주는 것으로 나타나 $800^{\circ}C$에서 가장 높은 탈황율을 보였으며, 무연탄비가 증가할수록 탈황율이 약간 증가하는 것으로 나타났다. 따라서, 유,무연탄 혼합연소시 폐제지슬러지는 매우 높은 탈황율을 보여 탈황제로서의 가능성을 확인할 수 있었다.

  • PDF

석탄배합비율과 제조공정조건에 따른 활성탄의 물성변화 (Physical Properties of Activated Carbon with Coal Blend Ratios and Manufacturing Conditions)

  • 김상철;박경애;이승범;홍인권
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.835-841
    • /
    • 1998
  • 활성탄제조에 적합한 유연탄과 무연탄을 선정하여 활성탄을 제조하고, 유연탄과 무연탄의 혼합비율을 달리하였을 때 나타나는 물리적 특성을 규명하였다. 유연탄에 무연탄인 Dandong탄을 25, 50, 75 wt.%로 혼합하여 활성탄을 제조할 경우 활성탄 수율은 Dandong탄의 함량 증가에 따라 증가되었으나 겉보기 밀도는 유연탄의 성상에 관계없이 일정하게 나타났고, 흡착력을 나타내는 요오드가는 반대로 감소되었다. Fushun탄과 Dandong탄을 75:25 wt.%로 혼합한 후 활성화조건에 따른 기공특성을 관찰한 결과 기공분포는 활성화온도 $850{\sim}900^{\circ}C$에서 $20{\AA}$ 이하의 미세기공이 발달되었고, $830^{\circ}C$$950^{\circ}C$에서는 중간기공이 발달되었다. 또한 제조된 석탄혼합 활성탄의 성능을 고찰하기 위해 상용화된 제품과 실험을 통해 흡착성능을 비교하였는데 경쟁력있는 흡착력을 갖는 것으로 확인되었다. 따라서 활성탄 제조시 탄화 및 활성화 과정에서 여러 가지 조업변수와 원료탄 혼합효과에 의해 그 특성이 달라짐이 확인되었다.

  • PDF