• Title/Summary/Keyword: antenna miniaturization

Search Result 128, Processing Time 0.034 seconds

Design of Miniaturized Wideband Tapered Slot Antenna Using Slots Combining Fan-shaped Structures (부채꼴 구조를 조합한 슬롯을 이용한 소형 광대역 테이퍼드 슬롯 안테나 설계)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.629-634
    • /
    • 2023
  • In this paper, the design of a miniaturized wideband tapered slot antenna using slots combining various types of fan-shaped structures was studied. To miniaturize the tapered slot antenna and make it operate at low frequencies, slots combining fan-shaped structures were added to the ground plane of the tapered slot antenna. The miniaturization design process of the final proposed antenna was systematically explained by comparing the input reflection coefficient and gain variations when each fan-shaped structure was appended, compared to when there was no slot. The proposed miniaturized wideband tapered slot antenna using slots combining the fan-shaped structures was fabricated on an RF-35 substrate and its measured characteristics were compared with the simulation results. Experiment results show that the frequency band with a voltage standing wave ratio (VSWR) less than 2 was 2.59-11.39 GHz, and gain within the band was measured to be 3.3-7.0 dBi. The proposed miniaturized wideband tapered slot antenna can be reduced in size by 36.9%, compared to when there are no slots in the ground plane.

A Scalp-Implantable Antenna for Wireless Biotelemetry (무선 Biotelemetry용 인체 이식형 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.112-115
    • /
    • 2016
  • This paper demonstrates a scalp-implantable miniaturized antenna at the medical implant communication service (MICS) (402-405MHz) band. The antenna size is only $27.63mm^3$($8.5mm{\times}6.5mm{\times}0.5mm$), which is the smallest antenna for the MICS band. Miniaturization is achieved by using a symmetrical serpentine shaped radiating patch and placing open-end slots in the ground plane. In addition, co-axial feeding is used for excitation with a shorting pin connected between the radiator and ground. The antenna was simulated in a homogeneous skin model and in the human scalp. An experimental prototype of the proposed antenna was fabricated and measured in a skin-mimicking gel. Good agreement was obtained between the measurement and simulation results, showing a broad bandwidth of 49 MHz (from 395 to 444 MHz) for |S11| less than -10 dB and a maximum gain of -42.87 dBi. This gain is higher than the previous MICS antenna with respect to antenna size.

Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure (폴디드 모노폴 선로가 부착된 대수주기 구조를 이용한 다중대역 안테나)

  • Lee, hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.142-146
    • /
    • 2014
  • In this paper, an antenna which has quad band in GSM/DCS/PCS/Bluetooth is proposed. This structure is designed with miniaturization for wide band characteristic based on monopole antenna and log-periodic toothed trapezoid patch antenna which has slots. To achieve multi-bandwidth is used the microstrip line on the substrate. An antenna size is $35mm{\times}20mm$ on FR-4(${\varepsilon}r=4.4$) ground substrate of $35mm{\times}75mm{\times}1mm$ size. And proposed antenna is satisfied with impedance bandwidth(VSWR ${\leq}$ 3). The simulated maximum radiation gain is 1.92 dBi, 3.26 dBi, 3.97 dBi at the center frequency of 0.92 GHz, 1.97 GHz, 2.45 GHz, respectively.

Microstrip Antenna using Multi-layer and Folded Structure for GPS Application (적층 폴디드 구조를 이용한 GPS용 마이크로스트립 안테나)

  • Keum, Jae-min;Woo, Jong-myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.171-179
    • /
    • 2017
  • In this paper, microstrip antenna using multi-layer and folded structure for GPS application is presented for aircraft loading. Existing microstrip patch antenna used dielectric of high specific inductive capacity to miniaturize that cause smaller bandwidth and decline of efficiency due to dielectric loss. To compensate the existing flaws, Rogers TMM 10i(dielectric constant=9.8, loss tangent=0.002) is used for multi-layer dielectric miniaturization, and we construct folded radiating element on the surface of the dielectric applying perturbation effect. The antenna is designed in the bandwidth of GPS $L_1$ band, and the size of the antenna's radiating element is $20.3mm{\times}19.93mm$, and it gets 94.2% miniaturized characteristic of basic ${\lambda}/2$ microstrip patch antenna. Also the measured -10 dB bandwidth is 32.3 MHz(2.05%), 3 dB axial ratio bandwidth is 6.7 MHz(0.43%). Measured radiation patterns was maximum gain of 0.56 dBi at x axis polarization, 1.23 dBi at y axis polarization.

Miniaturization of Microstrip Antenna using Iris (Iris를 이용한 마이크로스트립 안테나의 소형화)

  • Seo Jeong-Sik;Woo Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.922-930
    • /
    • 2004
  • In this paper, the 3-dimensional microstrip antenna, where the lis is attached near the patch, on the pound and both patch and ground in zigzag, is designed and fabricated to miniaturize size of antenna. The path of surface current and permittivity in patch are increased because of attached Iris near the patch, on the pound and patch and found. In particula., the maximum size reduction effect among the three-type of $79.1\%$(17 mm$\times$90 mm) was presented in zigzag-type compared with the rectangular microstrip patch antenna(MPA) with a height of 9 mm at the resonant frequency of 1.575 GHz. The gain showed -1.15 dBd, -10 dB bandwidth showed 6.2$\%$(98 MHz), and HPBW of E-plane showed $154^{\circ}$. As that result we could confirm that the 3-dimensional structure with attached Irises is the proper form for the miniaturization of microstrip antenna.

A Study on Design of Microstrip Patch Antenna for Dedicated Short Range Communication (DSRC용 마이크로스트립 패치 안테나 설계 연구)

  • Park, Byeong-Ho;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.393-400
    • /
    • 2015
  • As the development and distribution of the intelligent transport system is spreading recently and some of the services are commercialized through a pilot project, interest in DSRC with high utilization is increasing and antennas for roadside and on board equipment are being studied. A single patch was used for a vehicle antenna due to the requests of miniaturization of size, but there was performance degradation in most cases due to miniaturization. In addition, some methods to improve performance have been used in the antennas that were previously researched using the arrays, but they have the disadvantages of bulkiness in size of the antennas when using the arrays. Therefore, in this paper, the CPW fed microstrip patch antenna with the simple structure of being compact and easy to produce, which can be used in the OBU of DSRC, was designed.

Printed Type Half-wavelength Small Loop Antenna (프린트형 반파장 소형 루프 안테나)

  • Ryu, Hong-Kyun;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.245-248
    • /
    • 2005
  • In this paper, small sized half-wavelength circular loop antenna which attached beneath a visor of helmet is designed and fabricated at the resonant frequency of 449MHz. To reduce the size of the antenna, double series-shorted stubs are inserted inside the loop for practical use of a vacant space of loop inside. Also, It is designed for the printed type to install the helmet easily. The size of antenna on helmet is reduced to 87.75%(diameter : 70mm, height :.36mm) compare with general type antenna(diameter : 200mm height 101mm). The return loss, -10dB bandwidth and gain are -13.2dB, 17.6MHz(3.9%), and -1.78dBd. And, radiation pattern is omni-directional pattern at H-plane. Therefore, it can be seen that the half-wavelength circular loop antenna using double series-shorted stubs is proper structure for the miniaturization and the installed antenna of the helmet.

  • PDF

Compact Dipole Antenna for Terrestrial Digital Multimedia Broadcasting Service

  • Ryu, Kwang-Woo;Jeon, Seung-Gil;Kim, Jeong-Pyo;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.489-491
    • /
    • 2008
  • A compact dipole antenna for the terrestrial digital multimedia broadcasting (TDMB) application is presented. The length of the antenna is about $0.06{\lambda}$ at the TDMB resonance frequency of 190 MHz. Miniaturization of the antenna is achieved by using meander structures and lumped elements. The proposed antenna has two resonance frequencies and covers the TDMB band from 174 MHz to 216 MHz in Korea. The antenna has good impedance bandwidth and radiation characteristics for the TDMB. The experimental results of the designed dipole antenna are presented and analyzed.

  • PDF

A CPW Antenna with Three Folded Lines for Mobile Communication (3개의 폴디드 라인을 갖는 이동통신용 CPW 안테나)

  • Shin, Ho-Sub;Choi, In-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.900-902
    • /
    • 2013
  • In this paper, we propose the CPW antenna with three folded lines for miniaturization. This antenna is consisted of a meander-line on the middle position for LTE band and two folded lines. As widths of three lines are gradually changed to broaden bandwidth, antenna is designed.

  • PDF

Design of Miniaturization Terminal Antenna for 2.4 GHz WiFi Band with MZR (MZR을 이용한 2.4 GHz WiFi 대역 소형 단말기 안테나 설계)

  • Lee, Young-Hun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • In this paper, we implemented an on-board miniaturization antenna operating 2.4 GHz using MZR(Mu Zero Resonator). It is must be operating under the constraint that the size of the small terminal PCB should be $78{\times}38{\times}0.8mm^3$ and the size of the system should be $63{\times}38{\times}0.8mm^3$ and the size of the radiating part should be $15{\times}38{\times}0.8mm^3$. The feeding structure uses a CPW structure for stable feeding and a feeding point at the upper left of the system board. A magnetic field coupling structure is used for coupling the feeding part and the antenna. The resonance frequency of the MZR is determined by the series inductance and capacitance of the cell, so the gap between the cells, the length of the cell, the length of the interdigital capacitor, and the spacing between the radiation part and the ground plane are analyzed. The antenna was designed and fabricated using the results. The total size of the antenna including the feed structure is $20.8{\times}9.0{\times}0.8mm^3$, and the electrical length is $0.1664{\lambda}_0{\times}0.072{\lambda}_0{\times}0.0064{\lambda}_0$. The measurement result for 10 dB bandwidth, gain and directivity are 440 MHz(18.3%), 0.4405 dB, and 2.722 dB respectively. It is confirmed that the radiation pattern has omnidirectional characteristics and it can be applied to ultra small terminal antenna.