• Title/Summary/Keyword: antagonistic pleiotropy

Search Result 1, Processing Time 0.015 seconds

Recent Advances in Cellular Senescence, Cancer and Aging

  • Lim, Chang-Su;Judith Campisi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.231-236
    • /
    • 2001
  • How much do we know about the biology of aging from cell culture studies Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body evidence suggests that senescence evolved to protect higher eu-karyotes, particularly mammals, from developing cancer, We now know that telomere shortening due to the biochemistry of DNA replication, induces replicative senescence in human cells. How-ever in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic in-sults, including oxidative damage. In young orgainsms, growth arrest by cell senescence sup-presses tumor development, but later in life, due to the accumulation of senescent cells which se-cret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain, if not in whole the apparently paradoxical effects of cellular senescence, though this still remains an open question.

  • PDF