• 제목/요약/키워드: antagonistic ability

검색결과 86건 처리시간 0.024초

Disease Suppressive Mechanisms of Antagonistic Bacteria against Phytophthorn capsici causing Phytophthora Blight of Pepper

  • Kim, Hye-Sook;Kim, Ki-Deok
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.93.2-94
    • /
    • 2003
  • In our previous studies, we selected three antagonistic bacteria, KJ1R5, KJ2C12, and KJ9C8 against Phytophthora capsici, the casual agent of Phytophthora blight of pepper. For elucidating production, root colonization, and total microbial activity were investigated. The dual culture assay was accomplished to elucidate existence of antibiotics. In this assay, any antagonistic bacteria did not inhibit growth of six important fungal plant pathogens, suggesting that these antagonists do not produce antibiotics. root surface or rhizosphere soil colonizations were examined with spontaneous rifampicin-resistant mutants equal to antagonistic ability of wild types. KJ2C12 colonized consistently rhizosphere soil while yellowish colonies of KJ1R5 and KJ9C8 well colonized root surfaces and rhizosphere soil. Total microbial activity in pots treated with the antagonistic bacteria was measured using fluorescein diacetate hydrolysis. total microbial activity of three antagonistic bacteria treatments was significantly higher than that of buffer-treated control until 4days after treatment. However, total microbial activity of treatment of three antagonistic bacteria decreased after 7 days. These results indicate that the antagonistic bacteria, KJ1R5 and KJ9C8 colonized and protected roots well against Phytophthora blight of pepper through competition of infection courts, especially competitions.

  • PDF

친환경 제제로부터 식물병원균에 대한 길항 미생물의 선발 (Selection of Antagonistic Microorganisms against Plant Pathogens from Eco-friendly Formulations)

  • 강근혜;차재율;허빛나;이옥순;이용복;곽연식
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.68-74
    • /
    • 2012
  • BACKGROUND: Some microorganisms extant in nature have ability to suppress various plant pathogens, and also can promote plant growth. Thus microorganisms are such great source of antimicrobial agents to develop antagonistic microorganism production and eco-friendly crop management. We isolated the microorganisms in various eco-friendly formulations. The suppressive abilities against plant pathogens have been characterized in vitro level. METHODS AND RESULTS: The indigenous microorganisms have been isolated from Cooked rice, Black sugar, Rice Bran, and Red clay using dilution plating method. Population of bacteria and fungi were above 107 in the all formulations. We isolated and pure cultured the microorganisms based on morphological characteristics. Three major plant pathogens (Fusarium oxysporum, Rhizoctonia solani, Phytophthora capsici) have been used to select antagonistic microorganisms. Total 20 bacteria and 9 fungi showed the pathogen growth suppression ability in vitro condition. The selected microorganisms were identified by ITS sequence similarity. CONCLUSION: All tested eco-friendly formulations contained high-density of the microorganisms. Among the isolated microorganisms, Bacillus spp. and Streptomyces spp. showed the most effective antifungal activity against the plant pathogens such as F. oxysporum, R. solani, and P. capsici. Among the selected fungi Trichoderma sp. demonstrated antifungal activity. Our results suggest that the currently adapted eco-friendly formulations might useful for sustain agricultural system.

Potential Control of Foodborne Pathogenic Bacteria by Pediococcus pentosaceus and Lactobacillus graminis Isolated from Fresh Vegetables

  • Gonzalez-Perez, C.J.;Vargas-Arispuro, I.;Aispuro-Hernandez, E.;Aguilar-Gil, C.L.;Aguirre-Guzman, Y.E.;Castillo, A.;Hernandez-Mendoza, A.;Ayala-Zavala, J.F.;Martinez-Tellez, M.A.
    • 한국미생물·생명공학회지
    • /
    • 제47권2호
    • /
    • pp.183-194
    • /
    • 2019
  • The consumption of fresh vegetables has been related to recurrent outbreaks of foodborne diseases (FBD) worldwide. Therefore, the development of effective alternative technologies is necessary to improve the safety of these products. This study aimed to isolate and identify epiphytic lactic acid bacteria (LAB) from fresh fruits and leafy vegetables and characterize their antagonistic capacity due to their ability to produce bacteriocins or antibacterial compounds. For this, 92 LAB isolates from fruits and leafy vegetables were screened for antagonistic activity. Two strains with the highest and broadest antagonistic activities were selected for further characterization; one from cantaloupe melon (strain CM175) and one from cilantro leaves (strain C15). The cell-free supernatants (CFS) of CM175 and C15 were found to exhibit antagonistic activity against FBD-causing pathogens. The CM175 and C15 strains were identified as Pediococcus pentosaceus and Lactobacillus graminis, respectively. Notably, the P. pentosaceus CM175 CFS stopped the growth of Salmonella Typhimurium, Salmonella Saintpaul, Staphylococcus aureus, and Listeria monocytogenes, and delayed Escherichia coli O157:H7 growth. Moreover, L. graminis C15 CFS delayed the growth of all indicator pathogens, but did not completely stop it. Organic acids and bacteriocin-like molecules were determined to be possibly exerting the observed antagonistic activity of the identified LAB strains. Thus, application of the antagonistic compounds produced by Pediococcus pentosaceus and Lactobacillus graminis could be a novel and ecological strategy in developing antimicrobial biopreservatives for the food industry and mitigating FBD by reducing the biological contamination in fruit and vegetable orchards, mainly via their potential in controlling both gram-negative and gram-positive pathogenic bacteria.

Bacillus subtilis가 Corn ( Zea mays L. ) , White Clover ( Trifolium repens L. ) 및 Tall Fescue ( Festuca arundinacea Schreb. ) 유식물의 생육에 미치는 영향 (Effecets of Bacillus subtilis on Growth of Seedings in Corn ( Zea mays L. ) , White Clover ( Trifolium repens L. ) and Tall Fescue ( Festuca arundinacea Schreb. ))

  • Park, Ki-Chun;Chang Youn;Kim, Dong-Am
    • 한국초지조사료학회지
    • /
    • 제18권3호
    • /
    • pp.195-204
    • /
    • 1998
  • This study was designed to investigate the effects of antagonistic microorganism, Bacillus subtilis, on the growth of forage seedlings in repeated cultivation soils and unrepeated cultivation soils. The field experiment was wnducted in pots in a vinyl house using repeated and unrepeated cultivation soils. Forage types were 'Suwon 19' wrn(Zea mqs L.), 'Califbmia' white clover(Tr~oIium repens L.) and 'Fawn' tall fescue (Festuca arundianacea Schreb.). Samples of white clover and tall fescue were taken h m each pot at 36 days after seeding. Samples of wm were examined at 50 days after seeding. The most active antagonistic bacterium was isolated h m forage rhizosphere soil, and selected by reference to it's antagonistic ability on the growth of pathogenic fungi, Rhizoctonia solmi and Fusarium oxyspomm, and it was identified as Bacillus subtilis. This strain strongly suppressed the growth of fungal pathogens among isolated rhizobacteria. The dry weight of forage shoots and roots cultivated in unrepeated cultivation soils was higher than that cultivated in repeated cultivation soils. The dry weight of forage was positively affected by the inoculation of the antagonistic bacterium, Bacillus subtilis, in both repeated cultivation soils and unrepeated cultivation soils. In conclusion, the growth of forage was more affected by the inoculation of the antagonistic bacterium in unrepeated cultivation soils than that in repeated cultivation soils, and bacterization of forage with B. subtilis resulted in an inrreased yield.

  • PDF

가금티브스균 Salmonella gallinarum의 생육을 저해하는 길항미생물의 선발 및 동정 (Isolation, Identification and Cultural Condition of the Antagonistic Microorganism Against Salmonella gallinarum Causing Fowl Typhoid)

  • 김진락;김상달
    • 생명과학회지
    • /
    • 제13권6호
    • /
    • pp.843-848
    • /
    • 2003
  • 가금티프스는 가금류에 Salmonella gallinarum이 원인균이 되어 발병하는 양계산업에 막대한 지장을 주는 질병이다. 가금티프스를 억제하기 위한 생균제 개발을 위한 목적으로써 가금티프스 원인균인 Salmonella gallinarum의 생육을 저해시킬 수 있는 길항균주를 토종닭의 내장으로부터 분리하여 생육특성과 길항물질 생산성을 조사하고, 이 균주를 분류학적으로 동정하였다. 분리된 길항균주는 Bacillus amyloliquefaciens와 98% 상동성을 나타내어 최종적으로 Bacillus amyloliquefaciens Y3로 명명하였다. 0.3% maltose, 0.2% $NH_4Cl,\; 37^{\circ}C$ pH 7에서 균생육 및 길항물질의 생산능이 가장 우수하였으나 장내 담즙에 대한 내성은 크게 나쁘지 않을 것으로 확인되어졌다. 생산된 길항물질을 추정하여 본 결과 분자량이 10,000보다 작은 저분자물질이었으며 $80^{\circ}C$에서 20분간 열처리한 후에도 80%의 활성을 유지하는 내열성 물질임을 확인할 수 있었다. 향후 선발되어진 Bacillus amyloliquefaciens Y3가 생산해내는 길항물질에 대한 연구와 개량을 통하고 장내 정착성 실험을 거쳐 우수균주로 확인되면 양계산업에 사용될 우수한 생균제로 개발이 가능할 것이라 생각된다.

Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum

  • Lopez-Gonzalez, Rocio Crystabel;Juarez-Campusano, Yara Suhan;Rodriguez-Chavez, Jose Luis;Delgado-Lamas, Guillermo;Medrano, Sofia Maria Arvizu;Martinez-Peniche, Ramon Alvar;Pacheco-Aguilar, Juan Ramiro
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.24-35
    • /
    • 2021
  • Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/㎠). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce anti-fungal lipopeptides from iturin and fengycin families.

청국장으로부터 Bacillus cereus에 대한 길항 균주 분리 및 길항 효과 (Isolation of Bacillus spp. from Cheonggukjang and Its Antagonistic Effect against Bacillus cereus)

  • 이남근;박정완;조일재;김병용;권기옥;함영태
    • 한국식품과학회지
    • /
    • 제40권6호
    • /
    • pp.669-673
    • /
    • 2008
  • 청국장 내에 B. cereus을 효과적으로 저지하기 위한 생물학적제어 방법의 개발을 위하여 전통적 방법으로 제조한 백태 및 흑태 청국장으로부터 총 20종의 Bacillus 속 균주를 분리하였고, 이중에서 24시간 배양액에서 B. cereus에 대한 길항활성이 가장 높은 Bacillus sp. SC-8 균주를 선별하였다. 이 균주를 B. cereus와 혼합하여 청국장을 제조한 후 길항능을 분석한 결과 청국장 발효 중에는 B. cereus에 대한 길항효과가 있었으나, 발효 후 $4^{\circ}C$ 저장 중에는 균체수가 감소하여 억제효과가 감소하는 것으로 분석되었다. 또한 대조군으로 사용하였던 Bacillus sp. SC-15 균주에서는 배양액에서는 B. cereus에 대한 길항 활성이 낮았으나 청국장 내에서는 길항효과를 보임에 따라 청국장 발효에 관여하는 균들은 배양 환경에 따라 길항물질의 생성에 차이가 있음을 보였다.

토양길항세균 Bacillus sp. KL-3의 대사산물을 이용한 벼도열병균 Pyricularia oryzae의 생물학적방제

  • 김규영;김상달
    • 한국미생물·생명공학회지
    • /
    • 제25권4호
    • /
    • pp.396-402
    • /
    • 1997
  • Biocontrol of plant pathogens provides an alternative means of reducing the incidence of plant diseases without the negative aspects of chemical pesticides. Nowdays, as the resistant fungi about the chemical fungicides have revealed and the concern of environment has increased, the biological control of phytopathogenic fungi by the antagonistic microorganisms is very much indispensable. For the selection of strong antagonistic bacterium for biological control agent of rice leafblast and cucumber gray mold rot, the antifungal strain KL-3 strain was selected among 120 strains isolated from the rhizosphere soils. And the strain was identified to be a species of Bacillus subtilis or closely related strain. In several biochemical and in vitro antibiosis tests, antifungal substances of Bacillus sp. KL-3 were presumed heat stable, micromolecular antibiotic substances. In vivo test and vinyl house field test, the antifungal substances of Bacillus sp. KL-3 represented excellent biocontrol ability aganist Alternaria mali, Phyricularia oryzae, and Alternaria kikuchiana as well as broad spectrum of other fungi. In particular, Bacillus sp. KL-3 strain showed more predominant activity than some chemical fungicides against fungi shown to resist chemcal fungicides.

  • PDF

항진균성 방선균 Promicromonospora sp. KH-28이 생산하는 Chitinase와 항생물질에 의한 시드름병균 F. oxysporum의 생육억제 (Antagonistic Role of Chitinase and Antibiotic Produced by Promicromonospora sp. KH-28 toward F.oxysporum)

  • 한길환;이창은;김상달
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.349-353
    • /
    • 1999
  • Antagonistic Promicromonospora sp. KH-28 isolated from a suppressive soil could produced a chitinase and a antifungal antibiotic for the biocontrol ability. The chitinase and the antibiotic appeared to inhibit plant pathogens of Fusarium oxysporum. Phytophthora capsici, Alternaria kiki, fusarium solani, Stemphylium sp., and Psudomonas fluorescens. the antibiotic produced from the strain was identified as a antifungal substance of 503 dalton having a pyrimidine skeleton with an aliphatic side chain. The Promicromonospora sp. KH-28 was able to suppress effectively F. oxysporum derived-fusarium wilt of red-pepper plant in the pot in vivo test.

  • PDF

Servo control of an under actuated system using antagonistic shape memory alloy

  • Sunjai Nakshatharan, S.;Dhanalakshmi, K.;Josephine Selvarani Ruth, D.
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.643-658
    • /
    • 2014
  • This paper presents the design, modelling and, simulation and experimental results of a shape memory alloy (SMA) actuator based critical motion control application. Dynamic performance of SMA and its ability in replacing servo motor is studied for which the famous open loop unstable balancing ball and beam system direct driven by antagonistic SMA is designed and developed. Simulation uses the mathematical model of ball and beam structure derived from the first principles and model estimated for the SMA actuator by system identification. A PID based cascade control system consisting of two loops is designed and control of ball trajectory for various target positions with settling time as control parameter is verified experimentally. The results demonstrate the performance of SMA for a complicated i.e., under actuated, highly nonlinear unstable system, and thereby it's dynamic behaviour. Control strategies bring out the effectiveness of the actuator and its possible application to much more complex applications such as in aerospace control and robotics.