• Title/Summary/Keyword: ant colony system

Search Result 81, Processing Time 0.038 seconds

Diet-Right: A Smart Food Recommendation System

  • Rehman, Faisal;Khalid, Osman;Haq, Nuhman ul;Khan, Atta ur Rehman;Bilal, Kashif;Madani, Sajjad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2910-2925
    • /
    • 2017
  • Inadequate and inappropriate intake of food is known to cause various health issues and diseases. Due to lack of concise information about healthy diet, people have to rely on medicines instead of taking preventive measures in food intake. Due to diversity in food components and large number of dietary sources, it is challenging to perform real-time selection of diet patterns that must fulfill one's nutrition needs. Particularly, selection of proper diet is critical for patients suffering from various diseases. In this article, we highlight the issue of selection of proper diet that must fulfill patients' nutrition requirements. To address this issue, we present a cloud based food recommendation system, called Diet-Right, for dietary recommendations based on users' pathological reports. The model uses ant colony algorithm to generate optimal food list and recommends suitable foods according to the values of pathological reports. Diet-Right can play a vital role in controlling various diseases. The experimental results show that compared to single node execution, the convergence time of parallel execution on cloud is approximately 12 times lower. Moreover, adequate accuracy is attainable by increasing the number of ants.

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Feature Subset Selection Algorithm based on Entropy (엔트로피를 기반으로 한 특징 집합 선택 알고리즘)

  • 홍석미;안종일;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2004
  • The feature subset selection is used as a preprocessing step of a teaming algorithm. If collected data are irrelevant or redundant information, we can improve the performance of learning by removing these data before creating of the learning model. The feature subset selection can also reduce the search space and the storage requirement. This paper proposed a new feature subset selection algorithm that is using the heuristic function based on entropy to evaluate the performance of the abstracted feature subset and feature selection. The ACS algorithm was used as a search method. We could decrease a size of learning model and unnecessary calculating time by reducing the dimension of the feature that was used for learning.

Basic Study on Spatial Optimization Model for Sustainability using Genetic Algorithm - Based on Literature Review - (유전알고리즘을 이용한 지속가능 공간최적화 모델 기초연구 - 선행연구 분석을 중심으로 -)

  • Yoon, Eun-Joo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.133-149
    • /
    • 2017
  • As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.

An Evolutionary Algorithm based Distribution Methodology for Small-scale Biofuel Energy Companies (중소 바이오연료 기업의 물류 문제 해결을 위한 진화적 알고리즘 기반 배송 방법론)

  • Kim, Soo whan;Ryu, Jun-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.804-810
    • /
    • 2018
  • Most biofuel companies are in a small scale with short experience of operating the entire supply chain. In order to compete with existing fossil fuel competitors, renewable companies should be more responsive to demand. It is financially important to reflect this in the decision supporting system of the company. This paper addresses an evolutionary algorithm based methodology for the distribution problem of renewable energies. A numerical example was presented to illustrate the applicability of the proposed methodology with some remarks.

Suggestion for Spatialization of Environmental Planning Using Spatial Optimization Model (공간최적화 모델을 활용한 환경계획의 공간화 방안)

  • Yoon, Eun-Joo;Lee, Dong-Kun;Heo, Han-Kyul;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.27-38
    • /
    • 2018
  • Environmental planning includes resource allocation and spatial planning process for the conservation and management of environment. Because the spatialization of the environmental planning is not specifically addressed in the relevant statutes, it actually depends on the qualitative methodology such as expert judgement. The results of the qualitative methodology have the advantage that the accumulated knowledge and intuition of the experts can be utilized. However, it is difficult to objectively judge whether it is enough to solve the original problem or whether it is the best of the possible scenarios. Therefore, this study proposed a methodology to quantitatively and objectively spatialize various environmental planning. At first, we suggested a quantitative spatial planning model based on an optimization algorithm. Secondly, we applied this model to two kinds of environmental planning and discussed about the model performance to present the applicability. Since the models were developed based on conceptual study site, there was a limitation in showing possibility of practical use. However, we expected that this study can contribute to the fields related to environmental planning by suggesting flexible and novel methodology.

Implementation of App System for Personalized Health Information Recommendation (사용자 맞춤형 건강정보 추천 앱 구현)

  • Park, Seong-min;Park, Jeong-soo;Lee, Yoon-kyu;Chae, Woo-Joon;Shin, Moon-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.316-318
    • /
    • 2019
  • Recently, healthy life has become an issue in an aging society, and the number of people who have been interested in continuous health care for better life is increasing. In this paper, we implemented a personalized recommendation systm to provide convenient healthcare management for user. The PHR (Personal Health Record) of user could be stored in the server along with health related information such as lifestyle, disease, and physical condition. The users could be classified into similar clusters according to the PHR profile in order to provide healthcare contents to the users who had similar PHR profile. K-Means clustering was applied to generate clusters based on PHR profile and ACDT(Ant Colony Decision Tree) algorithm was used to provide personalised recommendation of health information stored in knowledge base. The app system developed in this paper is useful for users to perform healthcare themselves by providing information on serious diseases and lifestyle habits to be improved according to the clusters classified by PHR profile.

  • PDF

Application and Comparison of Genetic Algorithm and Harmony Search Algorithm for Optimal Cost Design of Water Distribution System (상수도 관망 최적설계에 대한 유전 알고리즘과 하모니써치 알고리즘의 적용 및 비교)

  • Hong, Ari;Lee, Ho Min;Choi, Young Hwan;Choi, Ji Ho;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.521-521
    • /
    • 2016
  • 상수도 관망은 수원에서 수요절점까지 물을 안정적으로 공급하는 것을 목표로 한다. 상수도 관망의 최적설계는 수리학적 제한조건 (절점의 수압, 관로의 유속)을 만족하는 범위에서 비용을 최소화하는 설계안을 얻는 것으로 Savic and Walters (1997)는 유전 알고리즘 (Genetic Algorithms, Holland 1975)을 적용한 상수도 관망 설계 프로그램인 GANET를 제안하였고, Maier et al. (1996)은 개미군집알고리즘 (Ant Colony Optimization Algorithm, Dorigo et al. 1996)을 상수도 관망 최적설계에 적용한 후 그 결과가 유전 알고리즘에 비해 우수함을 증명하는 등 상수도 관망 최적설계에 관한 연구가 활발히 진행되어 오고 있다. 유전알고리즘은 선택, 교차, 돌연변이의 반복계산 과정을 통하여 최적해를 찾는 최적화 기법이다. 이 과정에서 결정변수는 유전자 (Gene)의 집합으로 표현되며, 염색체 (Chromosome) 내에서 근접한 유전 인자들은 일종의 Building Block을 형성하게 된다. Building Block은 좋은 해를 갖는 유전 인자를 높은 확률로 보관하여 지역해에 빠질 가능성을 줄이는 반면, 유전형 (Genotype)이 표현형 (Phenotype)을 충분히 모방하여 표현하지 못한 경우 오히려 최적해의 탐색을 방해할 수 있다는 한계점을 갖는다. 유전 알고리즘을 상수도 관망 최적설계에 적용하였을 때에도 이 한계점은 여실히 드러난다. 관로의 관경을 결정변수로 설정한 후 유전형으로 표현하였을 때, 관망도 상에서 근접하지 않은 두 관로가 염색체 내에서 연속으로 나열된다면 두 관로 간의 연관성이 실제보다 크게 고려되기 때문이다. 한편, 하모니써치 (Harmony Search, Geem et al. 2001) 알고리즘은 즉흥 연주 (Improvisation)를 통해 최상의 화음을 만들어내는 현상으로부터 착안하여 만들어진 최적화기법으로 연산 기법은 무작위선택, 기억회상, 피치조정 등으로 구성되어 있으며, 결정변수에 해당하는 연주자가 독립적으로 행동하며 해를 탐색한다는 점에서 유전알고리즘과 큰 차이를 갖는다. 본 연구에서는 유전알고리즘의 Building Block에 의해 발생하는 오류를 개선하고자, 상수도 관망 최적설계 연구에 많이 사용되는 Hanoi 관망 (Fujiwara and Khang 1990) 관로의 정렬 순서를 여러 가지 기준으로 설정하여 관망데이터를 구축한 후 하모니써치와 유전 알고리즘을 적용하여 최적화를 수행하였고 그 결과를 비교하였다. 그 결과 유전 알고리즘과 달리 하모니써치 알고리즘의 경우, 관로의 나열 순서와 상관없이 우수한 최적해 탐색 결과를 보이는 것을 확인할 수 있었다.

  • PDF

A Study on the Design and Implementation of Multi-Disaster Drone System using Deep Learning-based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Park, Jonghyen;Jeong, Yerim;Jang, Seohyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.556-559
    • /
    • 2020
  • 최근 태풍, 지진, 산불, 산사태, 전쟁 등 다양한 재난 상황으로 인한 인명피해와 자금 손실이 꾸준히 발생하고 있고 현재 이를 예방하고 복구하기 위해 많은 인력과 자금이 소요되고 있는 실정이다. 이러한 여러 재난 상황을 미리 감시하고 재난 발생의 빠른 인지 및 대처를 위해 본 논문에서는 인공지능 기반의 재난 드론 시스템을 설계 및 개발하였다. 본 연구에서는 사람이 감시하기 힘든 지역에 여러 대의 재난 드론을 이용하며 딥러닝 기반의 최단 경로 알고리즘을 적용해 각각의 드론이 최적의 경로로 효율적 탐색을 실시한다. 또한 드론의 근본적 문제인 배터리 용량 부족에 대한 문제점을 해결하기 위해 Ant Colony Optimization (ACO) 기술을 이용하여 각 드론의 최적 경로를 결정하게 된다. 제안한 시스템 구현을 위해 여러 재난 상황 중 산불 상황에 적용하였으며 전송된 데이터를 기반으로 산불지도를 만들고, 빔프로젝터를 탑재한 드론이 출동한 소방관에게 산불지도를 시각적으로 보여주었다. 제안한 시스템에서는 여러 대의 드론이 최적 경로 탐색 및 객체인식을 동시에 수행함으로써 빠른 시간 내에 재난 상황을 인지할 수 있다. 본 연구를 바탕으로 재난 드론 인프라를 구축하고 조난자 탐색(바다, 산, 밀림), 드론을 이용한 자체적인 화재진압, 방범 드론 등에 활용할 수 있다.