Rehman, Faisal;Khalid, Osman;Haq, Nuhman ul;Khan, Atta ur Rehman;Bilal, Kashif;Madani, Sajjad A.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.6
/
pp.2910-2925
/
2017
Inadequate and inappropriate intake of food is known to cause various health issues and diseases. Due to lack of concise information about healthy diet, people have to rely on medicines instead of taking preventive measures in food intake. Due to diversity in food components and large number of dietary sources, it is challenging to perform real-time selection of diet patterns that must fulfill one's nutrition needs. Particularly, selection of proper diet is critical for patients suffering from various diseases. In this article, we highlight the issue of selection of proper diet that must fulfill patients' nutrition requirements. To address this issue, we present a cloud based food recommendation system, called Diet-Right, for dietary recommendations based on users' pathological reports. The model uses ant colony algorithm to generate optimal food list and recommends suitable foods according to the values of pathological reports. Diet-Right can play a vital role in controlling various diseases. The experimental results show that compared to single node execution, the convergence time of parallel execution on cloud is approximately 12 times lower. Moreover, adequate accuracy is attainable by increasing the number of ants.
Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.2
/
pp.48-55
/
2010
Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.2
/
pp.87-94
/
2004
The feature subset selection is used as a preprocessing step of a teaming algorithm. If collected data are irrelevant or redundant information, we can improve the performance of learning by removing these data before creating of the learning model. The feature subset selection can also reduce the search space and the storage requirement. This paper proposed a new feature subset selection algorithm that is using the heuristic function based on entropy to evaluate the performance of the abstracted feature subset and feature selection. The ACS algorithm was used as a search method. We could decrease a size of learning model and unnecessary calculating time by reducing the dimension of the feature that was used for learning.
Journal of the Korean Society of Environmental Restoration Technology
/
v.20
no.6
/
pp.133-149
/
2017
As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.
Most biofuel companies are in a small scale with short experience of operating the entire supply chain. In order to compete with existing fossil fuel competitors, renewable companies should be more responsive to demand. It is financially important to reflect this in the decision supporting system of the company. This paper addresses an evolutionary algorithm based methodology for the distribution problem of renewable energies. A numerical example was presented to illustrate the applicability of the proposed methodology with some remarks.
Journal of the Korean Society of Environmental Restoration Technology
/
v.21
no.2
/
pp.27-38
/
2018
Environmental planning includes resource allocation and spatial planning process for the conservation and management of environment. Because the spatialization of the environmental planning is not specifically addressed in the relevant statutes, it actually depends on the qualitative methodology such as expert judgement. The results of the qualitative methodology have the advantage that the accumulated knowledge and intuition of the experts can be utilized. However, it is difficult to objectively judge whether it is enough to solve the original problem or whether it is the best of the possible scenarios. Therefore, this study proposed a methodology to quantitatively and objectively spatialize various environmental planning. At first, we suggested a quantitative spatial planning model based on an optimization algorithm. Secondly, we applied this model to two kinds of environmental planning and discussed about the model performance to present the applicability. Since the models were developed based on conceptual study site, there was a limitation in showing possibility of practical use. However, we expected that this study can contribute to the fields related to environmental planning by suggesting flexible and novel methodology.
Park, Seong-min;Park, Jeong-soo;Lee, Yoon-kyu;Chae, Woo-Joon;Shin, Moon-sun
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.316-318
/
2019
Recently, healthy life has become an issue in an aging society, and the number of people who have been interested in continuous health care for better life is increasing. In this paper, we implemented a personalized recommendation systm to provide convenient healthcare management for user. The PHR (Personal Health Record) of user could be stored in the server along with health related information such as lifestyle, disease, and physical condition. The users could be classified into similar clusters according to the PHR profile in order to provide healthcare contents to the users who had similar PHR profile. K-Means clustering was applied to generate clusters based on PHR profile and ACDT(Ant Colony Decision Tree) algorithm was used to provide personalised recommendation of health information stored in knowledge base. The app system developed in this paper is useful for users to perform healthcare themselves by providing information on serious diseases and lifestyle habits to be improved according to the clusters classified by PHR profile.
Hong, Ari;Lee, Ho Min;Choi, Young Hwan;Choi, Ji Ho;Kim, Joong Hoon
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.521-521
/
2016
상수도 관망은 수원에서 수요절점까지 물을 안정적으로 공급하는 것을 목표로 한다. 상수도 관망의 최적설계는 수리학적 제한조건 (절점의 수압, 관로의 유속)을 만족하는 범위에서 비용을 최소화하는 설계안을 얻는 것으로 Savic and Walters (1997)는 유전 알고리즘 (Genetic Algorithms, Holland 1975)을 적용한 상수도 관망 설계 프로그램인 GANET를 제안하였고, Maier et al. (1996)은 개미군집알고리즘 (Ant Colony Optimization Algorithm, Dorigo et al. 1996)을 상수도 관망 최적설계에 적용한 후 그 결과가 유전 알고리즘에 비해 우수함을 증명하는 등 상수도 관망 최적설계에 관한 연구가 활발히 진행되어 오고 있다. 유전알고리즘은 선택, 교차, 돌연변이의 반복계산 과정을 통하여 최적해를 찾는 최적화 기법이다. 이 과정에서 결정변수는 유전자 (Gene)의 집합으로 표현되며, 염색체 (Chromosome) 내에서 근접한 유전 인자들은 일종의 Building Block을 형성하게 된다. Building Block은 좋은 해를 갖는 유전 인자를 높은 확률로 보관하여 지역해에 빠질 가능성을 줄이는 반면, 유전형 (Genotype)이 표현형 (Phenotype)을 충분히 모방하여 표현하지 못한 경우 오히려 최적해의 탐색을 방해할 수 있다는 한계점을 갖는다. 유전 알고리즘을 상수도 관망 최적설계에 적용하였을 때에도 이 한계점은 여실히 드러난다. 관로의 관경을 결정변수로 설정한 후 유전형으로 표현하였을 때, 관망도 상에서 근접하지 않은 두 관로가 염색체 내에서 연속으로 나열된다면 두 관로 간의 연관성이 실제보다 크게 고려되기 때문이다. 한편, 하모니써치 (Harmony Search, Geem et al. 2001) 알고리즘은 즉흥 연주 (Improvisation)를 통해 최상의 화음을 만들어내는 현상으로부터 착안하여 만들어진 최적화기법으로 연산 기법은 무작위선택, 기억회상, 피치조정 등으로 구성되어 있으며, 결정변수에 해당하는 연주자가 독립적으로 행동하며 해를 탐색한다는 점에서 유전알고리즘과 큰 차이를 갖는다. 본 연구에서는 유전알고리즘의 Building Block에 의해 발생하는 오류를 개선하고자, 상수도 관망 최적설계 연구에 많이 사용되는 Hanoi 관망 (Fujiwara and Khang 1990) 관로의 정렬 순서를 여러 가지 기준으로 설정하여 관망데이터를 구축한 후 하모니써치와 유전 알고리즘을 적용하여 최적화를 수행하였고 그 결과를 비교하였다. 그 결과 유전 알고리즘과 달리 하모니써치 알고리즘의 경우, 관로의 나열 순서와 상관없이 우수한 최적해 탐색 결과를 보이는 것을 확인할 수 있었다.
Kim, Jin-Hyeok;Lee, Tae-Hui;Park, Jonghyen;Jeong, Yerim;Jang, Seohyun
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.556-559
/
2020
최근 태풍, 지진, 산불, 산사태, 전쟁 등 다양한 재난 상황으로 인한 인명피해와 자금 손실이 꾸준히 발생하고 있고 현재 이를 예방하고 복구하기 위해 많은 인력과 자금이 소요되고 있는 실정이다. 이러한 여러 재난 상황을 미리 감시하고 재난 발생의 빠른 인지 및 대처를 위해 본 논문에서는 인공지능 기반의 재난 드론 시스템을 설계 및 개발하였다. 본 연구에서는 사람이 감시하기 힘든 지역에 여러 대의 재난 드론을 이용하며 딥러닝 기반의 최단 경로 알고리즘을 적용해 각각의 드론이 최적의 경로로 효율적 탐색을 실시한다. 또한 드론의 근본적 문제인 배터리 용량 부족에 대한 문제점을 해결하기 위해 Ant Colony Optimization (ACO) 기술을 이용하여 각 드론의 최적 경로를 결정하게 된다. 제안한 시스템 구현을 위해 여러 재난 상황 중 산불 상황에 적용하였으며 전송된 데이터를 기반으로 산불지도를 만들고, 빔프로젝터를 탑재한 드론이 출동한 소방관에게 산불지도를 시각적으로 보여주었다. 제안한 시스템에서는 여러 대의 드론이 최적 경로 탐색 및 객체인식을 동시에 수행함으로써 빠른 시간 내에 재난 상황을 인지할 수 있다. 본 연구를 바탕으로 재난 드론 인프라를 구축하고 조난자 탐색(바다, 산, 밀림), 드론을 이용한 자체적인 화재진압, 방범 드론 등에 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.