• Title/Summary/Keyword: ant colony system

Search Result 81, Processing Time 0.03 seconds

Analysis of Intelligent Vehicle Control Methods for CIM at Non-signalized Intersections (비 신호 교차로에서 CIM을 위한 지능형 차량 제어기법 분석)

  • Joo, Hyunjin;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • There are lots of literature about connected car system from industry and academia. The connected car is a smart car integrated with IT technology that is connected to people, vehicles and traffic management systems. It is important to V2I (vehicle to infrastructure) communication which is the connection between the vehicle and the infrastructure. CIM (cooperative intersection management) is a device to manage the communication between vehicle and infrastructure. In this paper, we analyze two intelligent vehicle control methods using CIM at non-signalized intersections. In the first method, a vehicle to pass through intersection needs to reserve a resource of intersection. In the second method, trajectory patterns on pre-planned vehicles are classified to pass through intersection. We analyze case studies of two methods to be implemented by DP(dynamic programming) and ACO(ant colony optimization) algorithms. The methods can be reasonably improved by placing importance on vehicles or controlling speeds of vehicles.

Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem (다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘)

  • Byeong-Gil Lee;Kyubeom Jeon;Jonghwan Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

SynRM Servo-Drive CVT Systems Using MRRHPNN Control with Mend ACO

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1409-1423
    • /
    • 2018
  • Compared with classical linear controllers, a nonlinear controller can result in better control performance for the nonlinear uncertainties of continuously variable transmission (CVT) systems that are driven by a synchronous reluctance motor (SynRM). Improved control performance can be seen in the nonlinear uncertainties behavior of CVT systems by using the proposed mingled revised recurrent Hermite polynomial neural network (MRRHPNN) control with mend ant colony optimization (ACO). The MRRHPNN control with mend ACO can carry out the overlooker control system, reformed recurrent Hermite polynomial neural network (RRHPNN) control with an adaptive law, and reimbursed control with an appraised law. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the RRHPNN and the appraised law of the reimbursed control are established. Furthermore, to help improve convergence and to obtain better learning performance, the mend ACO is utilized for adjusting the two varied learning rates of the two parameters in the RRHPNN. Finally, comparative examples are illustrated by experimental results to confirm that the proposed control system can achieve better control performance.

Field Application of Least Cost Design Model on Water Distribution Systems using Ant Colony Optimization Algorithm (개미군집 최적화 알고리즘을 이용한 상수도관망 시스템의 최저비용설계 모델의 현장 적용)

  • Park, Sanghyuk;Choi, Hongsoon;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.413-428
    • /
    • 2013
  • In this study, Ant Colony Algorithm(ACO) was used for optimal model. ACO which are metaheuristic algorithm for combinatorial optimization problem are inspired by the fact that ants are able to find the shortest route between their nest and food source. For applying the model to water distribution systems, pipes, tanks(reservoirs), pump construction and pump operation cost were considered as object function and pressure at each node and reservoir level were considered as constraints. Modified model from Ostfeld and Tubaltzev(2008) was verified by applying 2-Looped, Hanoi and Ostfeld's networks. And sensitivity analysis about ant number, number of ants in a best group and pheromone decrease rate was accomplished. After the verification, it was applied to real water network from S water treatment plant. As a result of the analysis, in the Two-looped network, the best design cost was found to $419,000 and in the Hanoi network, the best design cost was calculated to $6,164,384, and in the Ostfeld's network, the best design cost was found to $3,525,096. These are almost equal or better result compared with previous researches. Last, the cost of optimal design for real network, was found for 66 billion dollar that is 8.8 % lower than before. In addition, optimal diameter for aged pipes was found in this study and the 5 of 8 aged pipes were changed the diameter. Through this result, pipe construction cost reduction was found to 11 percent lower than before. And to conclusion, The least cost design model on water distribution system was developed and verified successfully in this study and it will be very useful not only optimal pipe change plan but optimization plan for whole water distribution system.

Optimization of 3D Triangular Mesh Watermarking Using ACO-Weber's Law

  • Narendra, Modigari;Valarmathi, M.L.;Anbarasi, L.Jani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4042-4059
    • /
    • 2020
  • The development of new multimedia techniques such as 3D printing is increasingly attracting the public's attention towards 3D objects. An optimized robust and imperceptible watermarking method based on Ant Colony Optimization (ACO) and Weber Law is proposed for 3D polygonal models. The proposed approach partitions the host model into smaller sub meshes and generates a secret watermark from the sub meshes using Weber Law. ACO based optimized strength factor is identified for embedding the watermark. The secret watermark is embedded and extracted on the wavelet domain. The proposed scheme is robust against geometric and photometric attacks that overcomes the synchronization problem and authenticates the secret watermark from the distorted models. The primary characteristic of the proposed system is the flexibility achieved in data embedding capacity due to the optimized strength factor. Extensive simulation results shows enhanced performance of the recommended framework and robustness towards the most common attacks like geometric transformations, noise, cropping, mesh smoothening, and the combination of such attacks.

Truss Design Optimization using Ant Colony Optimization Algorithm (개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화)

  • Lee, Sang-Jin;Han, Yu-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.709-712
    • /
    • 2010
  • 본 논문은 개미군락최적화 알고리즘을 이용한 트러스 구조물의 설계최적화에 대한 이론적 배경과 수치해석 결과를 기술하였다. 트러스의 설계최적화를 수행하기 위하여 구조물의 중량을 최소화하는 것을 목적 함수로 하고 구조물에서 발생하는 응력과 변위의 허용치를 초과하지 않는 것을 구속조건으로 이용하였다. 본 연구에서는 개미군락알고리즘을 구조물의 최적화에 적용하기 위하여 외판원문제(travelling salesman problem: TSP)를 재 정의하는 방법을 사용하였으며 최대-최소개미시스템(max-min ant system)을 도입하여 트러스 구조물의 최적설계를 수행하였다. 이때 이산화 된 설계변수를 사용하였으며 구속조건을 처리하기 위해서 벌점함수를 사용하였다. 본 연구를 통하여 개미군락최적화 알고리즘은 구조최적화에 그 적용 가능성이 높았으며 전통적인 최적검색 기법의 새로운 대안으로 이용될 수 있는 것으로 나타났다.

  • PDF

Evolvable Hardware Using Ant Colony System (개미 집단 시스템을 이용한 진화 하드웨어)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.244-246
    • /
    • 2002
  • 진화 하드웨어(Evolvable Hardware)는 환경 적응력이 강하고 최적의 상태를 유연하게 유지하는 하드웨어 설계 기법이나 회로가 복잡해질수록 진화가 어려워지는 문제로 인해 활용이 늦어지고 있다. 본 논문에서는 이를 해결하기 위한 많은 연구 중 회로 진화 과정 분석을 위한 방법으로 개미집단 시스템을 제안한다. 경로 최적화 알고리즘인 개미집단 시스템을 적절히 변형하여 진화 하드웨어에 적용시키는 방법을 제안하고 이를 실험으로 확인하였으며, 실험 결과 하드웨어의 진화 과정을 관찰할 수 있었고, 목표 하드웨어의 해공간 특성이 페로몬으로 분포하고 있음도 관찰할 수 있었다.

  • PDF

Cell Grouping Design for Wireless Network using Artificial Bee Colony (인공벌군집을 적용한 무선네트워크 셀 그룹핑 설계)

  • Kim, Sung-Soo;Byeon, Ji-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • In mobile communication systems, location management deals with the location determination of users in a network. One of the strategies used in location management is to partition the network into location areas. Each location area consists of a group of cells. The goal of location management is to partition the network into a number of location areas such that the total paging cost and handoff (or update) cost is a minimum. Finding the optimal number of location areas and the corresponding configuration of the partitioned network is a difficult combinatorial optimization problem. This cell grouping problem is to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking is a minimum in location area wireless network. In fact, this is shown to be an NP-complete problem in an earlier study. In this paper, artificial bee colony (ABC) is developed and proposed to obtain the best/optimal group of cells for location area planning for location management system. The performance of the artificial bee colony (ABC) is better than or similar to those of other population-based algorithms with the advantage of employing fewer control parameters. The important control parameter of ABC is only 'Limit' which is the number of trials after which a food source is assumed to be abandoned. Simulation results for 16, 36, and 64 cell grouping problems in wireless network show that the performance of our ABC is better than those alternatives such as ant colony optimization (ACO) and particle swarm optimization (PSO).

Spatial Decision Support System for Development and Conservation of Unexecuted Urban Park using ACO - Ant Colony Optimization - (장기 미집행 도시계획시설 중 도시공원을 위한 보전/개발 공간의사결정 시스템 - 개미군집알고리즘(ACO)를 이용하여-)

  • Yoon, Eun-Joo;Song, Eun-Jo;Jeung, Yoon-Hee;Kim, Eun-Young;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.2
    • /
    • pp.39-51
    • /
    • 2018
  • Long-term unexecuted urban parks will be released from urban planning facilities after 2020, this may result in development of those parks. However, little research have been focused on how to develop those parks considering conservation, development, spatial pattern, and so on. Therefore, in this study, we suggested an optimization planning model that minimizes the fragmentation while maximizing the conservation and development profit using ACO (Ant Colony Optimization). Our study area is Suwon Yeongheung Park, which is long-term unexecuted urban parks and have actual plan for private development in 2019. Using our optimization planning model, we obtained four alternatives(A, B, C, D), all of which showed continuous land use patterns and satisfied the objectives related to conservation and development. Each alternative are optimized based on different weight combinations of conservation, development, and fragmentation, and we can also generated other alternatives immediately by adjusting the weights. This is possible because the planning process in our model is very fast and quantitative. Therefore, we expected our optimization planning model can support "spatial decision making" of various issue and sites.

Solution of SMP Problem by Adapting ACS Algorithm (ACS알고리즘을 이용한 안정된 결혼 문제 해결에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.68-74
    • /
    • 2010
  • This paper suggest a new ACS algorithm to solve SMP which was solved by Gale-Shapley algorithm. The stable marriage problem is an extensively-studied combinatorial problem with many practical applications. The classical Gale-Shapley algorithm produces a marriage that greatly favors the men at the expense of the women, or vice versa. In this paper we apply ACS algorithm to SMP to find 4 kinds of solutions such as stable matching with man-optimal, woman-optimal, egalitarian stable matching, sex-fair stable matching. So this ACS is a novel method to solve Stable Marriage Problem. Our simulation results show the effectiveness of the proposed ACS.