• Title/Summary/Keyword: anodization

Search Result 336, Processing Time 0.024 seconds

Superhydrophobic Engineered Surface Based on Nanohoneycomb Structures (나노허니컴 구조물을 이용한 산업용 극소수성 표면 제작)

  • Kim, Dong-Hyun;Park, Hyun-Chul;Lee, Kun-Hong;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • Superhydrophobic polytetrafluoroethylene ($Teflon^{(R)}$, Dupont) sub-micro and nanostructures were fabricated by the dipping method, based on anodization process in oxalic acid. The polymer sticking phenomenon during the replication creates the sub-microstructures on the negative polytetrafluoroethylene nanostructure replica. This process gives a hierarchical structure with nanostructures on sub-microstructures, which looks like the same structures as lotus leaf and enables commercialization. The diameter and the height of the replicated nano pillars were 40 nm and 40 um respectively. The aspect ratio is approximately 1000. The fabricated surface has a semi-permanent superhydrophobicity, the apparent contact angle of the polytetrafluoroethylene sub-micro and nanostructures is about $160^{\circ}$, and the sliding angle is less than $1^{\circ}$.

Comparison of chemical resistance properties of anodized film according to anodized sealing treatment method of Al6061 alloy (Al6061 합금의 양극산화 봉공 처리 방법에 따른 양극산화 피막의 내화학 특성 비교)

  • Young Uk Han;Sang Sub Lee;Jun Seok Lee;Gibum Jang;Sung Youl Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.201-207
    • /
    • 2024
  • This study compared the chemical resistance properties according to various sealing treatment methods for the anode film formed during the anodization process of Al6061 alloy. Al6061 aluminum was used in four different sealing treatment methods: boiling water sealing, lithium sealing, nickel sealing, and pressurized sealing, and each sample was evaluated for corrosion resistance through a 5% HCl bubble test and the microstructure was observed through a scanning electron microscope(SEM). According to the results, corrosion resistance increased as time and temperature increased in all sealing treatment methods. Relatively, corrosion resistance was high in the order of boiling water sealing, lithium sealing, nickel sealing, and pressure sealing, and the best corrosion resistance was found in pressure sealing. These research results can be helpful in selecting a process necessary to improve the efficiency and performance of anodizing process in the industrial field using aluminum alloys.

Effects of Surface Characteristics of TiO2 Nanotublar Composite on Photocatalytic Activity (TiO2 복합 광촉매의 표면 특성과 광촉매 효율)

  • Lee, Jong-Ho;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.556-564
    • /
    • 2014
  • To synthesize a high-performance photocatalyst, N doped $TiO_2$ nanotubes deposited with Ag nanoparticles were synthesized, and surface characteristics, electrochemical behaviors, and photocatalytic activity were investigated. The $TiO_2$ nanotubular photocatalyst was fabricated by anodization; the Ag nanoparticles on the $TiO_2$ nanotubes were synthesized by a reduction reaction in $AgNO_3$ solution under UV irradiation. The XPS results of the N doped $TiO_2$ nanotubes showed that the incorporated nitrogen ions were located in interstitial sites of the $TiO_2$ crystal structure. The N doped titania nanotubes exhibited a high dye degradation rate, which is effectively attributable to the increase of visible light absorption due to interstitial nitrogen ions in the crystalline $TiO_2$ structure. Moreover, the precipitated Ag particles on the titania nanotubes led to a decrease in the rate of electron-hole recombination; the photocurrent of this electrode was higher than that of the pure titania electrode. From electrochemical and dye degradation results, the photocurrent and photocatalytic efficiency were found to have been significantly affected by N doping and the deposition of Ag particles.

Formation of Nanoporous TiO2 Thin Films on Si by Anodic Oxidation (양극산화에 의한 나노다공성 TiO2 박막 생성)

  • Yoon, Yeo-Jun;Kim, Do-Hong;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.655-659
    • /
    • 2010
  • Nanoporous titanium dioxide ($TiO_2$) is very attractive material for various applications due to the high surface to volume ratio. In this study, we have fabricated nanoporous $TiO_2$ thin films on Si by anodic oxidation. 500-nm-thick titanium (Ti) films were deposited on Si by using electron beam evaporation. Nanoporous structures in the Ti films were obtained by anodic oxidization using ethylene glycol electrolytes containing 0.3 wt% $NH_4F$ and 2 vol% $H_2O$ under an applied bias of 5 V. The diameter of nanopores in the Ti films linearly increased with anodization time and the whole Ti layer could become nanoporous after anodizing for 3 hours, resulting in vertically aligned nanotubes with the length of 200~300 nm and the diameter of 50~80 nm. Upon annealing at $600^{\circ}C$ in air, the anodized Ti films were fully crystallized to $TiO_2$ of rutile and anatase phases. We believe that our method to fabricate nanoporous $TiO_2$ films on Si is promising for applications to thin-film gas sensors and thin-film photovoltaics.

Photocatalytic activity under visible-light with metal or $WO_3$ deposited-$TiO_2$ tubes (가시광감응을 위한 금속이나 $WO_3$ 도핑된 $TiO_2$ 튜브의 광활성 연구)

  • Heo, Ahyoung;Lee, Changha;Park, Minsung;Shim, Eunjung;Yoon, Jaekyung;Joo, Hyunku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.227.1-227.1
    • /
    • 2010
  • 본 연구는 자외선 영역의 흡수로 전자 정공의 전하쌍을 생성함으로써 광전압 및 전류를 일으키는 티타니아 물질을 금속지지체 표면에 양극산화로 튜브형 $TiO_2$(anodized tubular $TiO_2$; ATT)로 제조한 후 나노크기의 금속 혹은 $WO_3$입자를 담지하여 광감응 재료로 활용하였다. 이는 기존의 입자나 콜로이드 형태로 광촉매 물질을 고정화하여 사용한 재료의 탈리현상 및 효율저하를 극복하기 위함이다. ATT는 전해질 내에 전기화학적 에칭율과 화학적 용해율의 비율에 의해 나노튜브 길이 성장에 영향을 미치는데 이를 유기 전해질과 불산 전해질을 사용하여 정전압 혹은 정전류의 조건에서 다양한 길이의 $TiO_2$ 나노튜브를 제조하였다. 여기에 전기분해담지(electrolytic deposition; ELD)를 통하여 정전류 조건에서 다양한 금속(Pt, Pd, Ru)을 나노크기의 형태로 담지하여 광촉매 내 생성된 전자 정공의 재결합을 줄이고자 하였고 $WO_3$의 담지를 통하여 가시광 감응을 높이고자 하였다. 제조된 여러 조건의 시료는 SEM과 EDAX를 통하여 형태와 길이, 담지량을 확인 하고 XRD를 이용하여 열처리 온도에 따른 결정화상태를 확인하였으며 광전류 측정 및 Cr(VI)의 광환원과 MB의 광분해를 통하여 광효율을 관찰하였다. 금속이 도핑되었을 경우 순수 ATT보다 보통 3배의 흡착률과 UV광원 아래 2배의 광효율을 관찰할 수 있었는데 이 중 Pt의 담지가 가장 효율이 좋았으며 흡착률에서는 담지량의 증가에 따른 증가선을 관찰 할 수 있었으나 광원 사용시 3%담지율에서 최적을 확인 할 수 있었다. 또한 $TiO_2$외 가시광감응 활성을 높이기 위한 다양한 광촉매제조가 진행 중에 있다.

  • PDF

The Fabrication of Porous Nickel Oxide Thin Film using Anodization Process for an Electrochromic Device

  • Lee, Won-Chang;Choe, Eun-Chang;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.407.1-407.1
    • /
    • 2016
  • Electrochromism is defined as a phenomenon which involves persistently repeated change of optical properties between bleached state and colored state by simultaneous injection of electrons and ions, sufficient to induce an electrochemical redox process. Due to this feature, considerable progress has been made in the synthesis of electrochromic (EC) materials, improvements of EC properties in EC devices such as light shutter, smart window and variable reflectance mirrors etc. Among the variable EC materials, solid-state inorganics in particular, metal oxide semiconducting materials such as nickel oxide (NiO) have been investigated extensively. The NiO that is an anodic EC material is of special interest because of high color contrast ratio, large dynamic range and low material cost. The high performance EC devices should present the use of standard industrial production techniques to produce films with high coloration efficiency, rapid switching speed and robust reversibility. Generally, the color contrast and the optical switching speed increase drastically if high surface area is used. The structure of porous thin film provides a specific surface area and can facilitate a very short response time of the reaction between the surface and ions. The large variety of methods has been used to prepare the porous NiO thin films such as sol-gel process, chemical bath deposition and sputtering. Few studies have been reported on NiO thin films made by using sol-gel method. However, compared with dry process, wet processes that have the questions of the durability and the vestige of bleached state color limit the thin films practical use, especially when prepared by sol-gel method. In this study, we synthesis the porous NiO thin films on the fluorine doped tin oxide (FTO) glass by using sputtering and anodizing method. Also we compared electrical and optical properties of NiO thin films prepared by sol gel. The porous structure is promised to be helpful to the properties enhancement of the EC devices.

  • PDF

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

Synthesis of BaTiO3 Thin Film on Ti Electrode by the Current Pulse Waveform (펄스전류파형을 이용한 Ti 전극위에서 BaTiO3박막의 합성)

  • Kang, Jinwook;Tak, Yongsug
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.998-1003
    • /
    • 1998
  • $BaTiO_3$ thin film was electrochemically deposited on Ti electrode in a 0.4 M $Ba(OH)_2$ solution of $85^{\circ}C$ using a current pulse waveform. Both $BaTiO_3$ crystallinity and faradaic efficiency for the film formation were enhanced with the increase of cathodic current density and pulse time. Based on the surface analysis and electrochemical studies, it was suggested that, during cathodic pulsed, the surface pH increase due to the reduction of $H_2O$ accelerates the structural changes of Ti oxides which were formed during anodic cycle. Prior to experiments, Ti oxides were intentionally grown in 0.1 M $H_2SO_4$ solution and the effect of initial oxide film thickness on the $BaTiO_3$ film formation was investigated. The migration of $Ti^{+4}$ ions through the oxide film was retarded with the increase of film thickness and it was observed that the crystallization of $BaTiO_3$ was only limited to the defect area of surface oxides.

  • PDF

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.