• Title/Summary/Keyword: anodic polarization test

Search Result 99, Processing Time 0.021 seconds

Relationship Between Properties Degradation and Critical Aging Time of Super Austenitic and Duplex Stainless Steels

  • S. H. Choi;Y. R. Yoo;S. Y. Won;G. B. Kim;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.330-340
    • /
    • 2023
  • The objective of this study was to analyze effects of aging time on property degradation of super austenitic stainless steel of PRE 52.8 and super duplex stainless steel of PRE 48.7. To analyze corrosion properties based on aging time, a critical pitting temperature test was performed in a solution of 6% FeCl3 + 1% HCl and an anodic polarization test was performed in deaerated 0.5N HCl + 1N NaCl solution at a temperature of 50 ℃. Surface hardness was measured to analyze mechanical properties. It was found that corrosion properties and mechanical properties deteriorated rapidly as aging time increased. Critical pitting temperature had the most effect on critical aging time at which property changes occurred rapidly, followed by pitting potential and hardness. This trend was found to be closely related to the fraction of sigma phase. Rate of sigma phase formation was found to be significantly faster in duplex stainless steel than in austenitic stainless steel.

An Electrochemical Study on Corrosion Property of Repair Welding Part for Exhaust Valve (배기밸브 보수 용접부의 부식 특성에 관한 전기화학적 연구)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.82-88
    • /
    • 2008
  • The diesel engine of the merchant ship has been aperated in severe environments more and more, because the temperature of the exhaust gas of a combustion chamber is getting higher and higher with increasing use of heavy oil of law quality, due to the significant increase in the price of oil in recent some years. As a result, the degree of wear and corrosion between exhaust valve and seat ring is more serious compared to other engine parts. Thus the repair welding of exhaust valve and seat ring is a unique method to prolong the life of the exhaust valve, from an economical point of view. In this study, the corrosion property of both weld metal and base metal was investigated using electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and polarization resistance in 5% H2SO4 solution. The test specimen was a part of an exhaust valve stem being welded as the base metal, using various welding methods. In all cases, the corrosion resistance as well as hardness of the weld metal zone was superior to the base metal. In particular, plasma welding showed relatively good properties for both corrosion resistance and hardness, compared to other welding methods. In the case of DC SMAW (Shielded metal arc welding), corrosion resistance of the weld metal zone was better than that of the base metal, although its hardness was almost same as the base metal.

The Fracture Study of SCC of Al - Alloy for Marine Structures (해양구조물용 알미늄 합금의 SCC에 의한 파괴연구)

  • 김귀식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 1983
  • The test specimen, designated the double cantilever beam, was employed for a fracture mechanics study of stress corrosion cracking (SCC) of type 5083 Al-alloy in seawater. Stress intensities for this DCB specimen were calculated by using compliance, strain energy release rate and relation between stress intensity and strain energy release rate. Analytical expression for compliance as a function of crack length was obtained by applying beam theory. It was investigated that the polarization potentials affected the growth rate and surface of stress corrosion cracking. The results are as follows, The critical stress intensity was 134.81-148.38kg/mm super(3/2) and K sub(Ii) under polarization potentials was 75.92-145.78kg/mm super(3/2). The minimum stress corrosion crack growth rate was occurred at-987mV SCE. Insoluble compound on $\beta$ phase was looked into through SCC. The greater anodic potential is, the larger insoluble compound on $\beta$ phase becomes.

  • PDF

Effect of Induction Heat Bending Process on the Corrosion Properties of 316 Stainless Steel Pipes for Nuclear Power Plant (원자력발전소용 316 스테인리스강 배관의 부식특성에 미치는 유도가열벤딩공정의 영향)

  • Shin, Mincheol;Kim, Young Sik;Kim, Kyungsu;Chang, Hyunyoung;Park, Heungbae;Sung, Giho
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2014
  • Recently, the application of bending products has been increased since the industries such as automobile, aerospace, ships, and plants greatly need the usage of pipes. For facility fabrication, bending process is one of key technologies for pipings. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. Because of local heating and compressive strain, detrimental phases may be precipitated and microstructural change can be induced. This work focused on the effect of induction heat bending process on the properties of ASME SA312 TP316 stainless steel. Evaluation was done on the base metal and the bended areas before and after heat treatment. Microstructure analysis, intergranular corrosion test including Huey test, double loop electropotentiokinetic reactivation test, oxalic acid etch test, and anodic polarization test were performed. On the base of microstructural analysis, grain boundaries in bended extrados area were zagged by bending process, but there were no precipitates in grain and grain boundary and the intergranular corrosion rate was similar to that of base metal. However, pitting potentials of bended area were lower than that of the base metal and zagged boundaries was one of the pitting initiation sites. By re-annealing treatment, grain boundary was recovered and pitting potential was similar to that of the base metal.

Influence of Graphite Epoxy Composite Material on the Electrochemical Galvanic Corrosion of Metals (금속재료의 전기화학적 갈바닉 부식에 미치는 GECM의 영향)

  • Yoo, Y.R.;Son, Y.I.;Shim, G.T.;Kwon, Y.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2009
  • Non metallic composite materials, for example, GECM(graphite epoxy composite material) show high specific strength because of low density. These kinds of non metallic composite materials improved the structural effectiveness and operation economics. However, if these materials contacted several metals, corrosion can be arisen since non metallic composite materials have electrical conductivity. This paper dealt with galvanic corrosion between graphite epoxy composite material and several metals. Base on the electrochemical galvanic corrosion test between GECM and metals, corrosion current of carbon steel and aluminium increased with time but corrosion current of stainless steels and titanium decreased and galvanic potential increased. This behavior shows the galvanic corrosion depends upon the presence of passive film. Also, galvanic effect of GECM coupled with ferrous alloys and non-ferrous alloys was lower than that of 100% graphite, which is attributed to lower exposed area of graphite fiber in the GECM than apparent area of the GECM specimen used for the calculation of galvanic current in this work.

Influence of Annealing Temperatures on Corrosion Resistance of Magnesium Thin Film-Coated Electrogalvanized Steel

  • Lee, Myeong-Hoon;Lee, Seung-Hyo;Jeong, Jae-In;Kwak, Young-Jin;Kim, Tae-Yeob;Kim, Yeon-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.116-119
    • /
    • 2013
  • To improve the corrosion resistance of an electrogalvanized steel sheet, we deposited magnesium film on it using a vacuum evaporation method and annealed the films at $250-330^{\circ}C$. The zinc-magnesium alloy is consequently formed by diffusion of magnesium into the zinc coating. From the anodic polarization test in 3% NaCl solution, the films annealed at $270-310^{\circ}C$ showed better corrosion resistance than others. In X-ray diffraction analysis, $ZnMg_2$ was detected through out the temperature range, whereas $Mg_2Zn_{11}$ and $FeZn_{13}$ were detected only in the film annealed at $310^{\circ}C$. The depth composition profile showed that the compositions of Mg at $270-290^{\circ}C$ are evenly and deeply distributed in the film surface layer. These results demonstrate that $270-290^{\circ}C$ is a proper temperature range to produce a layer of $MgZn_2$ intermetallic compound to act as a homogeneous passive layer.

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

A Study on Corrosion Resistance and Mechanical Properties of Ti-15Sn System Alloys for Medical Implants (생체용 Ti-15Sn계 합금의 내식성 및 기계적 성질에 관한 연구)

  • Lee, Doh-Jae;Kim, Dae-Hwan;Park, Hyo-Byeong;Lee, Kyung-Ku
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2000
  • The mechanical properties and corrosion resistance of Ti alloys for medical implants have been investigated. Ti, Ti-15Sn-4Nb and Ti-15Sn-4Nb-2Zr alloys were melted in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloys were analysed by optical microscope, hardness and tensile tester. The tensile strength of the pure-Ti improved by addition of Sn and Nb and Ti-15Sn-4Nb alloy showed better Rockwell hardness compared with pure Ti. However, there was no significant difference in corrosion resistance between thoseTi-alloys made of Pure-Ti and Ti-15Sn-4Nb alloy. The passive films on the Ti-15Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO as demonstrated by X-ray photoelectron spectroscopy(XPS)

  • PDF

A Study on the Mechanical Properties of Weldments for AISI 409L Ferritic Stainless Steel (자동차 배기계용 AISI 409L 페라이트계 스테인리스강 용접부 물성에 관한 연구)

  • Lee, Sang Hwa;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.280-284
    • /
    • 2012
  • In this study, we prepared a sample of AISI 409L weld metals using automotive exhaust manifolds and evaluated their corrosion properties by conducting an anodic polarization test after 10 minute of heat treatment at $900^{\circ}C$. The specimens of AISI 409L transformed fully ferrite. Weld metal was refined more than base metal. Specimen of heat treatment at $900^{\circ}C$ and as weld specimen was formed precipitation. However heat treatment specimen was bulkly formed and coarser than the as weld specimen. The strength measured by 10 Hv highly at heat treatment specimens in comparison with as weld. The increase in strength is attributed to the precipitation of Ti. The result of heat treatment suggest that there was a decrease of current density and high corrosion potential. Following heat treatment process produced Ti precipitation and for this reason, it can restrain Cr-carbide so that steel will have more corrosion resistance.

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.