• 제목/요약/키워드: anodic $TiO_2$

검색결과 98건 처리시간 0.029초

$TiO_2$ 매트릭스에 나노사이즈의 귀금속 분산과 광전극 특성 (Dispersion of nanosized noble metals in $TiO_2$ matrix and their photoelectrode properties)

  • 윤종원
    • 한국결정성장학회지
    • /
    • 제19권5호
    • /
    • pp.251-255
    • /
    • 2009
  • 나노사이즈의 귀금속을 $TiO_2$ 매트릭스에 균질하게 분산 시킨 구조는 염료감응형 태양전지의 유망한 광전극 특성을 나타내는 것으로 보고되고 있다. 이와 같은 금 및 백금 나노미립자를 균질하게 분산된 구조의 광전극을 제작하기 위하여 석영 및 ITO 기판위에 동시스퍼터법에 의하여 박막을 합성 하였다. XRD분석을 통하여 상분석을 수행 한 결과 합성된 나노컴포지트는 Rutile상이 지배적인 결정 구조를 나타냈으며 열처리를 $600^{\circ}C$까지 진행함에 따라 $TiO_2$ 결정성의 향상 및 귀금속인 금 및 백금의 나노미립자가 증가 하는 결과를 나타내었다. 귀금속인 금 및 백금이 분산된 $TiO_2$ 광전극에서는 자외선(UV) 영역을 포함하여 가시광(VIS) 영역의 빛의 조사에 광전류 응답 특성을 발현 하였다. 가시광선 영역에서 발현된 광전류 응답 특성은 나노사이즈로 분산된 금 및 백금 금속과 $TiO_2$와의 계면 준위에 기인 한 것으로 판명 되었다.

Effects of Metal Anion Complexes in Electrolyte on the Properties of Anodic Oxide Films on ADC12 Al Alloy

  • Yoo, Hyeonseok;Lee, Chulho;Oh, Kiseok;Choi, Jinsub
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.130-134
    • /
    • 2016
  • The anodization of ADC12 aluminum alloy was investigated in the metal anionic acid media. Anodic oxide films containing foreign elements were formed on ADC12 Al alloy by anodization in the anion complex solution. Furthermore, the rough surface and cracks were considerably smoothened by the deposit of metal anions. When the size of metal anion was small, relatively large amount of metal anions was loaded in anodic films. Existence of $MoO_3$, $TiO_2$ and MgO was confirmed by XPS. According to the results of Tafel analysis, Mo oxide represented the most noble anti-corrosion potential due to $MoS_2$ formation. Corrosion current densities were generally higher than that of pristine anodic oxide without anion complexes.

높은 산소과전압과 내구성의 이산화납전극 제조에 관한 연구 (A Study on the Preparation of Lead Dioxide Electrode with High Oxygen Overvoltage and Durability)

  • 김재관;최병선;남종우
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1105-1114
    • /
    • 1996
  • ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$지지체상에 sodium lauryl sulfate 및 $TiO_2$분말을 첨가한 질산납 전해액에서 전착한 ${\beta}-PbO_2$층의 특성 및 성능을 XRD, SEM, cyclic voltammograms, 매크로전해를 이용하여 검토하였다. XRD분석결과 sodium lauryl sulfate 및 $TiO_2$분말의 존재하에 ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$ 지지체 위에 전착한 ${\beta}-PbO_2$층은 순수한 ${\beta}-PbO_2$층과 마찬가지로 정방정계구조를 나타냈다. SEM결과 sodium lauryl sulfate는 전착층의 결정입자크기를 작게 하는 경향을 보여준다. sodium lauryl sulfate 및 $TiO_2$분말의 존재하에 전착한 ${\beta}-PbO_2$전극은 KOH 및 $HClO_4$지지전해질에서 양극산화에 대한 산소과전압과 내구성을 크게 향상시켰다. 티타늄마드래스에 전착시킨 ${\beta}-PbO_2$전극을 이용하여 과염소산용액으로부터 오존 발생에 대한 전극성능과 내구성을 검토하였다. $HClO_4$지지전해질에 sodium lauryl sulfate와 $TiO_2$분말을 첨가하여 ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$ 마드래스상에 전착한 ${\beta}-PbO_2$전극이 가장 높은 전류효율과 내구성을 가짐을 확인하였다.

  • PDF

생체용 Ti-15Sn계 합금의 내식성 및 기계적 성질에 관한 연구 (A Study on Corrosion Resistance and Mechanical Properties of Ti-15Sn System Alloys for Medical Implants)

  • 이도재;김대환;박효병;이경구
    • 한국주조공학회지
    • /
    • 제20권3호
    • /
    • pp.208-215
    • /
    • 2000
  • The mechanical properties and corrosion resistance of Ti alloys for medical implants have been investigated. Ti, Ti-15Sn-4Nb and Ti-15Sn-4Nb-2Zr alloys were melted in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloys were analysed by optical microscope, hardness and tensile tester. The tensile strength of the pure-Ti improved by addition of Sn and Nb and Ti-15Sn-4Nb alloy showed better Rockwell hardness compared with pure Ti. However, there was no significant difference in corrosion resistance between thoseTi-alloys made of Pure-Ti and Ti-15Sn-4Nb alloy. The passive films on the Ti-15Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO as demonstrated by X-ray photoelectron spectroscopy(XPS)

  • PDF

AISI 304 스테인리스강에 코팅된 Ti/TiN film의 공식거동 (Pitting Behavior of Ti/TiN Film Coated onto AISI 304 Stainless Steel)

  • 박지윤;최한철;김관휴
    • 한국표면공학회지
    • /
    • 제33권2호
    • /
    • pp.93-100
    • /
    • 2000
  • Effects of Ti content and Ti underlayer on the pitting behavior of TiN coated AISI 304 stainless steel have been studied. The stainless steel containing 0.1~1.0wt% Ti were melted with a vacuum melting furnace and heat treated at $1050^{\circ}C$ for 1hr for solutionization. The specimen were coated with l$\mu\textrm{m}$ and 2$\mu\textrm{m}$ thickness of Ti and TiN by E-beam PVD method. The microstructure and phase analysis were conducted by using XRD, XPS and SEM with these specimen. XRD patterns shows that in TiN single-layer only the TiN (111) Peak is major and the other peaks are very weak, but in Ti/TiN double-layer TiN (220) and TiN (200) peaks are developed. It is observed that the surface of coating is covered with titanium oxide (TiO$_2$) and titanium oxynitride ($TiO_2$N) as well as TiN. Corrosion potential on the anodic polarization curve measured in HCl solution increase in proportion to the Ti content of substrate and by a presence of the Ti underlayer, whereas corrosion and passivation current densities are not affected by either of them. The number and size of pits decrease with increasing Ti content and a presence of the coated Ti film as underlayer in the TiN coated stainless steel.

  • PDF

ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태 (Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성 (Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity)

  • 조현기;안효진
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.

Analysis of Biocompatible TiO2 Oxide Multilayer by the XPS Depth Profiling

  • Jang, Jae-Myung;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2017
  • In this work, analysis of biocompatible TiO2 oxide multilayer by the XPS depth profiling was researched. the manufacture of the TiO2 barrier-type multilayer was accurately performed in a mixed electrolyte containing HAp, Pd, and Ag nanoparticles. The temperature of the solution was kept at approximatively $32^{\circ}C$ and was regularly rotated by a magnetic stirring rod in order to increase the ionic diffusion rate. The manufactured specimens were carefully analyzed by XPS depth profile to investigate the result of chemical bonding behaviors. From the analysis of chemical states of the TiO2 oxide multilayer using XPS, the peaks are showed with the typical signal of Ti oxide at 459.1 eV and 464.8 eV, due to Ti 2p(3/2) and Ti 2p(1/2), respectively. The Pd-3d peak was split into Pd-3d(5/2) and Pd-3d(3/2)peaks, and shows two bands at 334.7 and 339.9 eV for Pd-3d3 and Pd-3d5, respectively. Also, the peaks of Ag-3d have been investigated. The chemical states consisted of the O-1s, P-2p, and Ti-2p were identified in the forms of PO42- and PO43-. Based on the results of the chemical states, the chemical elements into the TiO2 oxide multilayer were also inferred to be penetrated from the electrolyte during anodic process.The structure characterization of the modified surface were performed by using FE-SEM, and from the result of biological evaluation in simulated body fluid(SBF), the biocompatibility of TiO2 oxide multilayer was effective for bioactive property.

  • PDF

다공성 티타늄 임플란트의 생체적합성 증진을 위한 복합 표면처리에 관한 연구 (A Study of Multi-Surface Treatments on the Porous Ti Implant for the Enhancement of Bioactivity)

  • 조유정;김영훈;장형순;강태주;이원희
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.229-234
    • /
    • 2008
  • Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase $TiO_2$ and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.

Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.119-119
    • /
    • 2016
  • Over the last years the anodic formation of ordered $TiO_2$ nanotube layers has created significant scientific interest. Titanium oxide nanotube formation on the titanium or titanium alloy surface is expected to be important to improve cell adhesion and proliferation under clinical conditions. It should be possible to control the nanotube size and morphology for biomedical implant use by controlling the applied voltage, alloying element, current density, anodization time, and electrolyte. $TiO_2$ nanotubes show excellent biocompatibility, and the open volume in the tubes may be exploited as a drug release platform and so on. Therefore, in this study, Nanotube shape on the Ti-29Nb-xHf alloys with applied potentials was reserched. $TiO_2$ nanotube formation on Ti-29Nb-xHf alloys was carried out using anodization technique as a function of applied DC potential (10 V to 30 V and 30 V to 10 V) and anodization time for 60~120 min in $1MH_3PO_4$ with small additions of (0.8 wt. %, to 1.2 wt. %) NaF. The morphology change of anodized Ti-29Nb-xHf alloys was determined by FE-SEM, XRD, and EDS.

  • PDF