• Title/Summary/Keyword: anode support

Search Result 59, Processing Time 0.024 seconds

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • Tan, Je-Wan;Lee, Dae-Hui;Kim, Bo-Gyeong;Kim, Ju-Seon;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

Quantitative Microstructure Analysis to Predict Electrical Property of NiO-YSZ Anode Support for SOFCs (미세조직 정량 분석을 통한 고체산화물 연료전지용 NiO-YSZ 연료극 전기전도도 예측)

  • Wahyudi, Wandi;Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • The correlation between NiO-YSZ microstructure and its electrical property used for SOFC anode was critically evaluated with image processing and direct measurement techniques. These innovative processing techniques were employed to quantify the contiguity of the anode constituent phase. The calculated contiguities were then correlated with electrical conductivity attained from 4-probe DC method. This investigation described that contiguity of nickel oxide phases of an anode has a linear relationship with its electrical conductivity. We observed that the contiguity of NiO increased from 0.18 to 0.50 then electrical conductivity attained was significantly increased from 520 S/cm to 1468 S/cm at $900^{\circ}C$.

Effect of Microstructure on Mechanical and Electrical Properties in Ni-YSZ of Anode Supported SOFC (연료극 지지체식 고체산화물 연료전지의 기계적 및 전기적 특성에 미치는 Ni-YSZ의 미세구조의 영향)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.592-598
    • /
    • 2011
  • Electrode of solid oxide fuel cell must have sufficient porosity to allow gas transport to the interface with electrolyte effectively but high porosity has a negative impact on structural stability in electrode support. Thus, the upper limit of porosity is based on consideration of mechanical strength of electrode. In this study, the effect of microstructure of Ni-YSZ anode supported SOFC on the mechanical and electrical property was investigated. LSCF composite cathode and 8YSZ electrolyte were used. The porosity of the anode was modified by the amount of graphite powder and added graphite contents were 24, 18, 12 vol%, respectively. The higher the porosity, the better the electrical performance, $P_{max}$. While the flexural strength decreased with increasing the amount of graphite. But the rate of increase in electrical performance and the rate of decrease in mechanical strength were not directly proportional to amount of graphite. The optimum graphite content incorporating both electrical and mechanical performance was 18 vol%.

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Development of Anode-supported Planar SOFC with Large Area by tape Casting Method (테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발)

  • Yu, Seung-Ho;Song, Keun-Suk;Song, Hee-Jung;Kim, Jong-Hee;Song, Rak-Hyun;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • For the development of low temperature anode-supported planar solid oxide fuel cell, the planar anode supports with the thickness of 0.8 to 1 mm and the area of 25, 100 and $150\;cm^2$ were fabricated by the tape casting method. The strength, porosity, gas permeability and electrical conductivity of the planar anode support were measured. The porosity of anode supports sintered at $1400^{\circ}C$ and then reduced in$H_2$ atmosphere was increased from $45.8\%\;to\;53.9\%$. The electrical conductivity of the anode support was $900 S/cm\;at\; 850^{\circ}C$ and its gas permeability was 6l/min at 1 atm in air atmosphere. The electrolyte layer and cathode layer were fabricated by slurry dip coating method and then had examined the thickness of $10{\mu}m$ and the gas permeability of 2.5 ml/min at 3 atm in air atmosphere. As preliminary experiment, cathode multi-layered structure consists of LSM-YSZ/LSM/LSCF. At single cell test using the electrolyte layer with thickness of 20 to $30{\mu}m$, we achieved $300\;mA/cm^2$ and 0.6V at $750^{\circ}C$

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.