• Title/Summary/Keyword: annual reproductive cycle

Search Result 80, Processing Time 0.025 seconds

Morphological Characteristics of Brown Alga Spatoglossum crassum Tanaka (Dictyotaceae, Dictyotales), New to Korea

  • Hwang, Il-Ki;Kim, Hyung-Seop;Lee, Wook-Jae
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2004
  • Morphological and phonological characteristics of brown alga Spatoglossum crassum Tanaka new to Korea were described based on the field and the indoor cultured plants. The taxonomic characteristics of the plants were agreed to those from the type locality-submerged reproductive organs in cortex, anatomical features, and absence of phaeophycean hairs on the surface. But they have rudimentary midrib on lower portion of thallus. We can observe the young plants on November, adult ones in June, and senile ones in August. This species has an annual life-cycle in the field, starting with germ lings in early November. The differentiation of thallus is quite different from other species of genera in tribe Zonarieae, e.g. Zonaria and Homoeostrichus. Three different tissues, meristoderm, cortex and medulla are discerned. The outmost cortical one celled layer as a meristoderm produce cortex by unequal periclinal division. In the apical cell division, the primary inner cells are developed into 3-4 cell layered medulla of thallus. The distribution of this species extends from Korea to Shizuoka Peninsula (34°40'N) Japan, which is the type locality of this species.

Sexual Maturation and Spawning Characteristics in Greenling, Hexagrammos otakii of the West Coast in Korea (서해산 쥐노래미, Hexagrammos otakii의 성성숙과 산란 특성)

  • 강희웅;정의영;김종화
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • To estimate the spawning period the annual change of gonadosomatic index (GSI) were examined from January 2000 to December 2001. Fecundity, spawning frequency and egg diameter were measured by ocular observation. Germ cell differentiation during gametogenesis, the reproductive cycle and the first sexual maturity of greenling Hexagrammos otakii were observed under light microscopy from January to December, 2000. GSI began to increase in August and reached the maximum in November when ovary was getting mature. The reproductive cycle of H. otakii can be divided into five successive stages in females: early growing stage (July), late growing stage (July to August), mature stage (September to October), ripe and spent stage (September to December), and recovery and resting stage (December to June). Males showed four successive stages : growing (June to August), mature (August to October), ripe and spent (September to December), and recovery and resting stage (December to May). According to the frequency distributions of egg diameter in spawning season, H. otakii could be one of polycyclic species spawning 2 times or more during one spawning season. Number of total eggs and mature eggs in the absolute fecundity were related to the standard length and body weight, respectively. Number of total eggs and mature eggs in relative fecundity were also proportional to the standard length, but rather these numbers decreased with body weight. Percentages of first sexual maturity of females and males in greenling were over 50% from 19.1 to 21.1cm in length, and 100% for fish over 25.1cm in length. Therefore, both sexes are ready to reproduce after one year old.

Monthly Gonadal and Sex Hormonal Changes of Indoor-Reared Seabass, Lateolabrax japonicus during Annual Reproductive Cycle (실내사육 농어, Lateolabrax japonicus의 생식소 및 성호르몬의 주년 변화)

  • Kang Duk Young;Han Hyoung Kyun;Baek Hea Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.614-620
    • /
    • 2002
  • The sea bass, Lateoiabrax japonicus is a highly valued fish in aquaculture in South Korea. For establishment of seedling production of sea bass,1 japonicus, we examined change of gonadal development and plasma steroid levels of sea bass reared in indoor tank. Male matured unsimultaneously faster than females and spawning of females took place between the end of January and March. After the spawning period, and until the following January, all the females were in preyitello genesis and in some males, spermatogenetic activity restarted gradually. In October, under reducing photoperiod, cortical alveoli appeared in growing oocyte and the development of spermatogenesis greatly increased. Between October and february, vitellogenesis and spermatogenesis occurred respectively in female and male and gonadosomatic index increased from 4.31 to $24.07\%$ in female and upper 6o/o in male. Also, two sex hormones were analyzed during the course of a reproductive cycle in the sea bass: plasma levels of the gonadal steroid testosterone (T) and estradiol-l7$\beta$ (E_{2}). Variation of the plasma concentrations of T and E, appeared to depend on gonad stages. Plasma T and E, levels were high from November to January, suggesting that an sufficient gonadal stimulation by both hormones may undergoing a processes for the formation of sperm and oocyte.

Experimental Studies on the Mechanism of Reproductive Cycle in the Bluegill, Lepomis macrochirus (파랑볼우럭, Lepomis macrochirus의 생식기구에 관한 실험적 연구)

  • LEE Taek Yuil;Kim Sunng Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.489-500
    • /
    • 1987
  • Annual reproductive cycle of Bluegill, Lepomis macrochirus (RAFINESQUE) were studied in the natural population. Based on these informations, reproductive mechanism of the fish including activation, degeneration and remature were examined under the controlled conditions of temperature and photoperioe. In the natural populations, gonads began to grow with the temperature increase in March ana matured in June, and spawning occurred in July. With the onset of the shorter day-length and the maximum temperature condition in August, the gonads began to degenerate. Resting stage was continued during winter season. In the laboratory-reared population, activation of the gonads was initiated by the complex environmental factors including higher temperature$(>15^{\circ}C)$ and longer photoperiod $(>14L)$. For the maturation, photoperiod of more than 14 hours was critical. Under this condition higher temperature was the only compensative factor. Regeneration of the gonads was induced by higher temperature$(>25^{\circ}C)$ and the shorter photoperiod accelerated the regenerative processes. Even from the resting stage the gonads can be induced to matured stage by the longer photoperiod $(>15L)$. Based on these observations, the reproductive rhythm of this fish is supposed to be artificially controlled.

  • PDF

Testicular Development and Serum Levels of Gonadal Steroids Hormone during the Annual Reproductive Cycle of the Male Koran Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et jeon) 수컷의 생식주기에 따른 정소 발달과 혈중 생식소 스테로이드의 변화)

  • 이원교;양석우
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.475-485
    • /
    • 1998
  • To clarify annual reproductive cycle of Koran dark sleeper, odontobutis platycephala, we examined the seasonal changes of gonadosomatic index(GSI), testicular development stages and sex steroid hormones in blood from December 1995 to November 1997. Testis was podlike shape from July to October, and tadpole-like shape from November because of its expanded posterior part. GSI was 0.14~0.18 from July to September and increased to $0.43{\pm}0.04$ in October and then was not changed significantly until February. GSI was reincreased to $0.52{\pm}0.09$ from March and then was kept at similer levels until May, but fell down to $0.28{\pm}0.05$ in June. As results of histological observation, testis was divided into 3 parts(anterior, boundary, posterior) in the development progress of germ cells. In July, the testis was composed of only spermatogonia without seminiferous tubules in most fishes. In the anterior part of testis, the ferquency of spermatogenesis stage seminiferous tubules appearing in August was more than 80% from September to December. decreased gradually from January to March and drastically in April, and then disappeared in June. The frequency of spermiogenesis stage seminiferous tubules appearing in December, increased gradually from January to March and drastically to 80% in April, and reached to 90% the highest levels of the year in June. Post-spawning stage seminiferous tubules did not appear throughout the year. The frequency of spermatogonia was 100% and 65% in July and August, and less than 20% in the rest period of the year. In the boundary part, the frequency of spermatogenesis stage seminiferous tubules appearing in August increased from September and reached to 82% in November, decreased from December, adn disappeared in March. The frequency of spermiogenesis stage seminiferous tubules appearing in November was less than 18% until February, and increased to 29%~57% from March to June. The frequency of post-spawning stage seminiferous tubules appeared 12%~25% only from March to June. The frequency of spermatogonia was 100% in July, decreased to 85% in August and 10% in November, and increased gradually from December to 50% in April, and decreased again from May to June. In the posterior part, seminiferous tubules with some seminiferous tubules increased drastically 80%~85% in August and September, decreased drastically from October to November and remained below 10% until February, and disappeared after March. The frequency of spermiogenesis stage seminiferous tubules appearing in August increased sharply from October and reached to 75% in November. decreased to 15% in December and no significant changes until March, and disappeared after April. The frequency of post-spawning stage seminiferous tubules appearing very early in November increased to 82% in December and 85%~95% until June. The frequency of spermatogonia was 100% in July, decreased drastically to 15% in August, disappeared from October to Mrch, but reappeared from April and kept at less than 10% until June. The blood level of testosterone (T) increrased gradually from August was $0.61{\pm}0.09 ng/m\ell$ in November, increrased drastically to $3.99{\pm}1.22 ng/m\ell$ in December and maintained at in similar level until March, and decreased to $0.25{\pm}0.14 ng/m{\ell} ~ 0.17{\pm}0.13ng/m{\ell}$ in April and May and no significant changes until July (P<0.05). The blood level of 17, 20 -dihydroxy-4-pregnen-3-one $ng/m{\ell}$in the rest of year without significant changes(P<0.05). Taken together these results, the germ cell development of testis progressed in the order of posterior, boundary, anterior part during annual reproductive cycle in Korean dark sleeper. The testicular cycle of Korean dark sleeper was as follows. The anterior part of testis : i.e. spermatogonial proliferation period (July), early maturation period (from August to November), mid maturation period (from December to March), late maturation period (from April to May) and functional maturation period (June) were elucidated. The boundary of testis, i.e. spermatogonial proliferation period (July), early maturation period (from August to October), mid maturation period (from November to February) and the coexistence period of late maturation, functional maturation and post-spawn (from March to June) were elucidated. The posterior of testis, i.e. spermatogonial proliferation period (July), mid maturation period (from August ot September), late maturation period (October), functional maturation period (November) and post-spawn period (from December to June) were elucidated. It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of Korean dark sleeper.

  • PDF

The Reproductive Patterns and Clinical Application of Endangered Common Chimpanzees by Monitoring the Steroid Hormone Measurements in Fecal Samples (분변내 스테로이드 호르몬의 측정을 통한 멸종 위기 침팬지의 번식형태와 임상적용)

  • Jung, So-Young;Kim, Mi-Young;Jeong, Yu-Jeong;Jang, Yu-Ni;Lim, Yang-Mook;Yoon, Yong-Dal
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • To monitor the reproductive patterns of endangered common chimpanzee including annual reproductive cycle, amenorrhea, breeding season, and pregnancy diagnosis, Time-Resolved Fluorescence Immuno Assay (TR-FIA) was used to trace MRH (estradiol, progesterone, testosterone) and human chorionic gonadotropin (HCG). In result of this research, age was not the important factor in determining the reproduction capability in common chimpanzee; it was rather greatly influenced by the combination of various factors such as individual's fertilizing ability, presence of obstetrical diseases, the pattern of mating behavior, and the mental communication under the introduction of a mating partner. This research will play an important role in operating conservation project for common chimpanzees and can be extended also for shedding new light on understanding human menopause and obstetrical diseases.

Annual gametogenic cycles of female mud shrimp Upogebia major (de Haan, 1841) and Austinogebia wuhsienweni(Yu, 1931) on the west coast of Korea (서해안에 서식하는 쏙(Upogebia major, de Hann 1841)과 가시이마쏙 (Austinogebia wuhsienweni, Yu 1931) 암컷의 생식 주기)

  • Hyun-Mi Ahn;Hyun-Sil Kang;Jae-Hee Song;Jae-Kwon Cho;Un-Ki Hwang;Hee-Do Jeung
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.298-307
    • /
    • 2023
  • The annual reproductive cycle of two species, Upogebia major (de Haan 1841) and Austinogebia wuhsienweni (Yu 1931), of the female mud shrimp from the west coast of Korea was investigated using histology. The collected samples were divided into adult and juvenile groups to understand the mature period of age class based on the carapace length(CL). Juvenile Upogebia(CL<25mm) were mostly inactive gonad with early (62%-100%) and late (10%-38%) development stages during the year, whereas the adult shrimp showed a seasonal pattern of gonad maturation(CL≥25 mm). The early and late developmental stages of oocytes were observed in adult Upogebia from November to March and mature eggs appeared from April to October. In adult Ausitnogebia (CL≥15 mm), fully grown oocytes were consistently observed during the study period, in which the ripe stage was found between January and June. On the other hand, most juvenile Austinogebia (CL<15 mm) maintained an immature state in the gonad. Both species of the mud shrimp reproduced from ovigerous females in the adult population and their egg-bearing period was distinguished from January to April for U. major and from July to September for A. wuhsienweni.

Phonology and Morphometrics Change of Zostera caespitosa Miki Populations at the Duksan Port in the Eastern Coast of Korea (동해 덕산항에 생육하는 포기거머리말(Zostera caespitosa Miki) 군집의 생물계절학과 형태 변이)

  • 이상룡;이성미;최청일
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.339-346
    • /
    • 2002
  • From March 1998 to August 2000, the phonology and morphometrics change of Zostera caespitosa Miki were examined at the Duksan Port in the eastern coast of Korea. Morphometric characteristics (shoot height, leaf length, sheath length, leaf width, and number of leaf per shoot), size and number of reproductive structures (spathe, spadix, and seeds), shoot density, biomass and physiochemical parameters (water temperature and nutrient concentrations) were measured. Significant differences between months (p < 0.05) existed for morphometric characteristics except for sheath length. The sequence of shoot heights clearly showed cyclical annual variation with water temperature. Vegetative shoots of Z. caespitosa were present throughout the year, but reproductive shoots were rarely occurred from mid January to early April in water temperature of $9-12^\circ{C}$. Flowering in the spathe began in mid February, and seed maturing was occurred in early April. Water column nitrate and phosphate concentration showed seasonal variation, but ammonia concentration was variable with season. Relationships between shoot morphometrics and physiochemical parameters were not significantly correlated but water temperature seemed to regulate the re-productive phase and annual life cycle. The mean shoot density and above biomass of the populations were $511.6\pm{25.6}\;shoots\;m^{-2}$ and $413.4\pm{19.8}\;g\;dry\;wt\;m^{-2}$, respectively.

Reproductive Cycle of Small Filefish, Rudarius ercodes (그물코쥐치, Rudarius ercodes의 생식주기)

  • LEE Taek Yuil;HANYU Isao
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.423-435
    • /
    • 1984
  • The reproductive cycle of the small filefish, Rudarius ercodes was investigated based on the annual variations of gonadosomatic index(GSI) and hepatosomatic index(HSI) by electronic and photic microscophy. The specimens used were collected at the coastal area of Benden island, Sizuokagen, Japan, from September 1982 to August 1983. GSI began to increase from March, starting season of longer daylength and higher water temperature, and reached the maximum value between June and August. It began to decrease from September with the lowest value appearing between November and February without any evident variation. The annual variations of HSI were not distinct in male filefish and were negatively related to GSI in female : HSI decreased in the summer season when the ovary was getting mature and reached the maximum in the winter season when the ovary was getting retrogressive. The ovary consisted of a pair of saccular structure with numerous ovarian sacs branched toward the median cavity. Oogonia divided and proliferated along the germinal epithelium of the ovarian sac. Young oocytes with basophile cytoplasm showed several scattering nucleoli along the nuclear membrane. when the oocytes growing to about 300 ${\mu}m$, nuclear membrane to disappear with nucleus migrating toward the animal pole. The regions of protoplasm were extremely confined within the animal hemisphere in which most of cytoplasms were filled with yolk materials and oil drops. After ovulation, residual follicles and growing oocytes remaining in the ovarian sacs degenerated. But perinucleatic young oocytes without follicles formed were not degenerated, and growing continuously still in the next year. Mitochondria and endoplasmic reticula in the cytoplasm remarkably increased with oocytes maturing and yolk accumulating. Those were considered to be functionally related to the yolk accumulation. Five or six layers of possible vitellogenin, oval-shaped disc structures with high electron density, appeared in the apex of follicular processes stretching to the microvilli pits of mature oocytes. Testis consisting of a pair of lobular structures in the right and left were united in the posterior seminal vesicle, Cortex of testis was composed of several seminiferous tubules, and medulla consisting of many sperm ducts connected with tubules. Steroid hormone-secreting cells with numerous endoplasmic reticula and large mitochondria of well developed cristae were recognized in the interstitial cells of the growing testis. Axial filament of spermatozoon invaginated deeply in the central cavity of the nucleus and the head formed U-shape with acrosome severely lacking, mitochondria formed large globular paranuclei at the posterior head, and microtubular axoneme of the tail represented 9+9+2 type. The annual reproductive cycles could be divided into five successive stages : growth(March to July), maturation(May to September), Spawning(mid May to early October) and resting stages(October to February). The spawning peak occurred from June to August.

  • PDF

Studies on the Reproductive Cycle of Damselfish, Chromis notatus (Temminck et Schlegel) (자리돔의 생식주기에 관한 연구)

  • LEE Young Don;LEE Taek Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • Annual reproductive cycle of the Damselfish, Chromis notatus collected monthly at the four coastal areas around Chejudo, Korea are studied on the bases of histological observations of gonadal tissue and various quantitative variables including gonadosomatic index (GSI), fatness, egg diameter composition and the first maturity. The ovary consisted of a pair of saccular structure with many ovarian sacs. Oogonia proliferated along the germinal epithelium of the ovarian sac. Young oocytes with basophilic cytoplasm showed several nucleoli along the nuclear membrane. When the oocytes reached about $450{\mu}m$ in diameter, nucleus migrate toward the animal pole, nuclear membrane disappeared and most of cytoplasm were filled with yolk materials and oil drops. After ovulation, residual follicle and growing oocytes remaining in the ovarian sacs degenerated. But early young oocytes without follicle layer were not degenerated, and growing continuously till the next year. The testis consisted of a pair of lobular structures in the right and left were united in the posterior seminal vesicle. Cortex of testis was composed of many sperm ducts connected with lobuli. GSI began to increase from March, starting season of longer day length and higher water temperature, and reached the maximum value between June and August. It began to decrease from September with the lowest value appearing between October and February without any evident variation. The annual reproductive cycle could be devided into five successive stage : growing(April to Many), mature(May to August), ripe and spent (June to August) and recovery and resting stage(September to March). The spawning peak occurred from June to August. According to the frequency distribution of egg diameter, Chromis notatus was a polycyclic species to spawn twice or more in a spawning season. Fatness, correlated with gonadal phases, was remarkably decreased by spawning. Percentage of the first maturity . in femate and male fish ranging from 7.0 to 7.9 cm were $50\%$ and from 9.0 to 9.9 cm in total length $100\%$.

  • PDF