• Title/Summary/Keyword: anisotropy of strength

Search Result 205, Processing Time 0.024 seconds

Temperature and Mechanical Properties of Welded Joints Under Friction Stir Welding Conditions of Mg Alloy (AZ61) (Mg Alloy(AZ61) 마찰교반용접 조건에 따른 용접부의 온도와 기계적 특성변화)

  • Lee, Woo Geun;Kim, Jung Seok;Sun, Seung-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.378-386
    • /
    • 2017
  • Friction stir welding was performed using six welding conditions to evaluate the mechanical properties and microstructure of the welded zone based on its temperature change in the extruded plate of magnesium alloy AZ61. The welded zone temperature was measured using a thermocouple, and the maximum temperature ranges for the advancing and retreating sides were approximately $210-315^{\circ}C$ and $254-339^{\circ}C$, respectively. Depending on the welding conditions, a temperature difference of more than $100^{\circ}C$ was observed. In addition, the maximum yield strength and maximum tensile strength of the welded component was 84.4% and 96.9%, respectively, of those of the base material. For the temperatures exceeding $300^{\circ}C$, oxidation defects occurred in the weld zone, which decreased the mechanical strength of the weld zone. The microstructure and texture confirmed that fracture occurred because of the grain size deviation of the welding tool and the severe anisotropy of the texture of the welded joints.

Numerical simulation of the effect of bedding layer geometrical properties on the punch shear test using PFC3D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.507-517
    • /
    • 2018
  • In this research the effect of bedding layer angle and bedding layer thickness on the shear failure mechanism of concrete has been investigated using PFC3D. For this purpose, firstly calibration of PFC3d was performed using Brazilian tensile strength. Secondly punch shear test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $25^{\circ}$. Totally 15 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than $50^{\circ}$, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be note that number of cracks decrease with increasing the layer thickness. The minimum shear punch test strength was occurred when layer angle is more than $50^{\circ}$. The maximum value occurred in $0^{\circ}$. Also, the shear punch test tensile strength was increased by increasing the layer thickness.

The Effect of Interpass Peening on Mechanical Properties in Additive Manufacturing of Ti-6Al-4V (Ti-6Al-4V의 AM에서 기계적 성질에 미치는 Interpass Peening의 영향)

  • Byun, Jae-Gyu;Yi, Hui-jun;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.6-12
    • /
    • 2017
  • Ti-alloys have high specific strength and are widely used for the filed of space aeronautics plant. However, it is difficult to process Ti-Alloys due to its high yield strength and it cannot raise the machining speed because it has a possibility of catching fire while processing. In order to reduce the number of processes for the Ti-alloys, the researches related to Additive Manufacturing(AM) have been actively carried out at the moment. As for the initial stage of AM market related to Ti-alloys, it started to use the raw material of powder metal, and it is currently being developed based on welding. In this study, Interpass peening reduced the size of the primary ${\beta}$ grain in the z-axis direction, increased the nucleation site of ${\alpha}-colony$, and decreased the length and width of ${\alpha}$ laths as though interpass rolling. Interpass peening leads to an increase in yield/ultimate tensile strength without decrease elongation, resulting decrease in anisotropy of the material.

Thermal, Mechanical Properties of LAS with the Addition of Mullite ($Li_2O-Al_2O_3-SiO_2$계 소지의 Mullite 첨가에 의한 열적, 기계적 특성에 관한 연구)

  • 최도문;유재근;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.381-388
    • /
    • 1993
  • Due to the anisotropy of thermal expansion, LAS system which has low thermal expansion property is hard to obtain a dense sintered body. Therefore, the thermal expansion coefficient and the mechanical strength were decreased. In this study, mullite, which has good mechanical properties in high temperature and comparatively low thmeral expansion coefficient, was taken as a additive in LAS system. And then, sintering, thermal, and mechanical properties were investigated. The results are follows; When mullite is added in eucryptite composition (Li2O.Al2O3.2SiO2) of LAS system, the creation of liquid phase results in the densification of sintered body and the specimen sintered at 136$0^{\circ}C$ for 2 hours shows optimum sintering condition. With the addition of mullite in eucryptite composition, mechanical strength is increased by the control of grain growth. Especially, flexual strength of EM0 specimen was about double value than the basic composition. Thermal expansion coefficients of EM0 and EM15 specimens sintered at 136$0^{\circ}C$ were -8.23$\times$10-6/$^{\circ}C$ and -4.90$\times$10-6/$^{\circ}C$ in the temperature range of RT.~80$0^{\circ}C$. As the mullite content are increased, negative thermal expansion ratios are decreased.

  • PDF

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

A New Method to Fabricate Bulk PCMs from Continuous Wires and the Mechanical Behaviors (연속된 와이어를 이용한 다층 PCM의 제조방법 및 특성 평가)

  • Lee, Yong-Hyun;Choi, Ji-Eun;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.245-252
    • /
    • 2007
  • Since the new millennium, truss PCMs(Periodic Cellular Metals) have drawn attention because of their superior specific stiffness, strength and multi-functionality. Prior studies have focused on the structural design and optimization. Kagome truss PCM has been proved to have the higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. In this study, we introduce a new idea to fabricate multi-layered Kagome truss PCM from continuous wires which can gain high strength as in piano wires and can be controlled to be defect free owing to drawing process. The relative density, the stiffness and the strength under bending and compressive load are estimated through elementary mechanics and compared with the results from experiments and FEA. The failure mechanisms are analyzed, and also mechanical performance and production are discussed.

Impact of thermal and chemical treatment on the mechanical properties of E110 and E110G cladding tubes

  • Kiraly, M.;Hozer, Z.;Horvath, M.;Novotny, T.;Perez-Fero, E.;Ver, N.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.518-525
    • /
    • 2019
  • The mechanical and corrosion behavior of the Russian zirconium fuel cladding alloy E110, predominantly used in VVERs, has been investigated for many decades. The recent commercialization of a new, optimized E110 alloy, produced on a sponge zirconium basis, gave the opportunity to compare the mechanical properties of the old and the new E110 fuel claddings. Axial and tangential tensile test experiments were performed with samples from both claddings in the MTA EK. Due to the anisotropy of the cladding tubes, the axial tensile strength was 10-15% higher than the tangential (measured by ring tensile tests). The tensile strength of the new E110G alloy was 11% higher than that of the E110 cladding at room temperature. Some samples underwent chemical treatment - slight oxidation in steam or hydrogenation - or heat treatment - in argon atmosphere at temperatures between 600 and $1000^{\circ}C$. The heat treatment during the oxidation had more significant effect on the tensile strength of the claddings than the oxidation itself, which lowered the tensile strength as the thickness of the metal decreased. The hydrogenation of the cladding samples slightly lowered the tensile strength and the samples but they remained ductile even at room temperature.

The Unsaturated Stress Strain Behavior of CDG (Completely Decomposed Granite) Soils (완전 풍화된 화강풍화토의 불포화 응력-변형률 거동 특성)

  • Ham, Tae-Gew;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.21-28
    • /
    • 2010
  • Decomposed granite soil is the most common type of soils. The measurement of the stress-strain-strength behavior of anisotropic decomposed granite soils is very important for the deformation and stability analysis of slopes, retaining walls, excavations. A series of unsaturated-drained triaxial compression tests were performed to know unsaturated strength properties. The sample had three different angles of the axial (major principal) direction to the sedimentation plane (compaction plane): 0, 45 and 90 degrees. The compression strain of specimens subjected to an isotropic compression was strongly influenced by the sedimentation angle. In addition, the time dependence was independent of the sedimentation angle in relation to the deformation behavior during the secondary compression process. The effect of the sedimentation angle on the triaxial compression strength and deformation was clearly shown with low confining stress. The effect of the sedimentation angle on the compressive strength and deformation was more evident in saturated specimens. A new method of predicting the shear strength of unsaturated decomposed granite soils, considering compaction angles, was proposed.

Effects of Anisotropic Consolidation on the Postcyclic Undrained Shear Strength of an Overconsolidated Clay (이방압밀이 반복하중을 받은 과압밀점토의 비배수전단강도에 미치는 영향)

  • Gang, Byeong-Hui;Yun, Hyeong-Seok;Park, Dong-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 1998
  • The effects of consolidation stress history including consolidation stress ratio, OCR and cyclic loading with drainage on the undrained shear strength of cohesive soil were investig toted. The ratio$(S_u/\sigma'_{vc})ckou/(S_U/\sigma_{vc})cuv$ was observed to increase with increasing OCR. The equation (1) in this paper by Mayne(1980) for the undrained shear strength of the overconsolidated clay and the equation (4) by Yasuhara(1994), for the postcyclic shear strength were found to be relatively well applicable in the case of Kofonsolidated. It was also suggested that the value of the critical state pore pressure parameter As in these two equations for the in situ shear strength of lightly overconsolidated clay(OCR< 3) be obtained by the standard consolidating test.

  • PDF

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF