• Title/Summary/Keyword: anisotropic yield function

Search Result 48, Processing Time 0.027 seconds

Crash Performance Evaluation of Hydro-formed Automotive DP-Steel Tube Considering Welding Heat Effects (용접부의 영향을 고려한 하이드로포밍된 자동차용 DP강관의 충돌 특성 평가)

  • Chung, K.H.;Kwon, H.S.;Park, S.H.;Ro, D.S.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.568-573
    • /
    • 2006
  • In order to numerically evaluate automotive hydro-formed DP-steel tubes on crash performance considering welding heat effects, the finite element simulations of crash behavior were performed for hydro-formed tubes with and without heat treatment effects. This work involves the mechanical characterization of the base material and the HAG-welded zone as well as finite element simulations of the crash test of hydro-formed tubes with welded brackets and hydro-forming of tubes. The welding heat effects on the crash performance are evaluated in efforts to improve the process optimization procedure of the engine cradle in the design stage. In particular, FEM simulations on indentations have been performed and experimentally verified for material properties of weld zone and heat affected zone.

Forming Limit Diagram Prediction for Ultra-Thin Ferritic Stainless Steel Using Crystal Plasticity Finite Element Method (결정소성 유한요소해석에 의한 극박 스테인리스강의 성형한계선도 예측)

  • Bong, H.J.;Lee, M.G.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • In order to characterize the macroscopic mechanical response of ultra-thin (0.1 mm thick) ferritic stainless steel sheet at various loading paths, a crystal plasticity finite element method (CP-FEM) was introduced. The accuracy of the prediction results was validated by comparing with the experimental data. Based on the results, the forming limit diagram (FLD) was predicted using a modified Marchinicak-Kuczinski model coupled to a non-quadratic anisotropic yield function, namely, Yld2000-2d. The predicted FLD was found to be in good agreement with the experimental data.

Springback Analysis of the Front Side Member with Advanced High Strength Steel (고강도 강판을 적용한 프런트 사이드 멤버의 스프링백 해석)

  • Song J. H.;Kim S. H.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.106-109
    • /
    • 2005
  • Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. Recently, advanced high strength steels (AHSS) such as TRIP and DP are finding acceptance in the automotive industry because their superior strength to weight ratio can lead to improved fuel efficiency and assessed crashworthiness of vehicles. The major troubles of the automotive structural members stamped with high strength steel sheets are the tendency of the large amount of springback due to the high yield strength and the tensile strength. The amount of springback is mainly influenced by the type of the yield function and anisotropic model induced by rolling. The discrepancy of the deep drawn product comparing the data of from the product design induced by springback must be compensated at the tool design stage in order to guarantee its function and assembly with other parts. The methodology of compensation of the low shape accuracy induced by large amount of springback is developed by the expert engineer in the industry. Recently, the numerical analysis is introduced in order to predict the amount of springback and to improve the shape accuracy prior to tryout stage of press working. In this paper, the tendency of springback is evaluated with respect to the blank material. The stamping process is analyzed fur the front side member formed with AHSS sheets such as TRIP60 and DP60. The analysis procedure fully covers the binderwrap, stamping, trimming and springback process with the commercial elasto-plastic finite element code LS-DYNA3D.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.258-261
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

  • PDF

Analysis of Failure Phenomena in Uni-axial Tension Tests of Friction Stir Welded AA6111-T4, AA5083-H18 and DP-Steel (마찰교반용접(FSW) 된 알루미늄 합금(AA6111-T4, AA5083-H18) 및 DP강 판재의 인장 실험시 파단 현상 해석)

  • Park, S.;Um, K.;Ma, N.;Ahn, K.;Chung, K.H.;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.304-308
    • /
    • 2007
  • Failure phenomena in uni-axial tension test were experimentally and numerically investigated for AA6111-T4, AA5083-H18 and DP-Steel, which were friction-stir welded with the same and different thicknesses. Forming limit diagram(FLD) was measured using hemispherical dome stretching tests for base materials and also predicted by Hill's bifurcation and M-K theories for welded areas. Finite element simulations well predicted hardening behaviors, failure locations as well as failure patterns for the uni-axial tension tests especially utilizing very fine meshes and FLD along with stress softening.

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

Rheological Behavior of Lyotropilc Solutions of Cellulose in the $NH_3/NH_4SCN$ Solvent System

  • Jo, Jae-Jeong;Cuculo, J.A.;Theil, M.H.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.36-37
    • /
    • 1990
  • In the past, facile dissolution of cellulose has been hampered by the lack of suitable nondegrading solvents. Recently, this problem has been solved in our laboratory by the discovery of an inexpensive, convenient solvent system, that is the mixture of $NH_3\;and\;NH_4SCN$, for cellulose. Also, the $cellulose/NH_3/NH_4SCN$ solution system has been found to form the anisotropic, i.e., liquid crystalline phase. It is believed that both the cholesterio and the nematic phase occur. This finding has prompted extensive on-going researoh on the formation of the liquid crystalline phase from an inexpensive natural source such as cellulose since the nematic phase is envisioned as an excellent precursor sources for products with desirable properties, for example, high modulus and high strength. This interest naturally leads to a desire to understand the theological properties of the nematic phase so that the transformation of the nematic phase to the solid state with desirable properties can be efficiently accomplished, ;From this point of view, the theological behavior of the $cellulose/NH3_/NH_4SCN$ system has been studied as a function of shear rate and shear stress over a wide range of solvent compositions, cellulose concentration, centrifugation and urea contents, Results indicate that the viscosity decreases with increasing shear rate. A marked shear thinning behavior and a quasi-Newtonian behavior were observed in the low shear rate region and in the high shear rate region, respectively for all solvent compositions. The $cellulose/NH_3/NH_4SCN$ solution system only exhibited the viscosity increase with increasing cellulose concentration and failed to show the viscosity drop generally observed at the point of incipience of liquid crystal formation, This may be due to the gel-like nature of the solution by the association of the rodlike molecules into bundles which may serve as crosslinking points giving the cellulose solution a network structure. Also, simply hydrogen bonding may be so restrictive of molecular mobility that a viscosity drop is blocked. In addition to the above results, yield stress and thixotropy were also observed in the $cellulose/NH_3/NB_4SCN$ solution system which are characteristics of liquid crystal and gel, The results of the effect of centrifugation on viscosity show that viscosity decreases by the application of centrifugation. This may be explained by the change of the piled polydomain structure to the dispersed polydomain structure due to the pressure gradient generated during centrifugation.ation.

  • PDF