• Title/Summary/Keyword: anisotropic model

Search Result 440, Processing Time 0.022 seconds

Image Denoising Based on Adaptive Fractional Order Anisotropic Diffusion

  • Yu, Jimin;Tan, Lijian;Zhou, Shangbo;Wang, Liping;Wang, Chaomei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.436-450
    • /
    • 2017
  • Recently, the method based on fractional order partial differential equation has been used in image processing. Usually, the optional order of fractional differentiation is determined by a lot of experiments. In this paper, a denoising model is proposed based on adaptive fractional order anisotropic diffusion. In the proposed model, the complexity of the local image texture is reflected by the local variance, and the order of the fractional differentiation is determined adaptively. In the process of the adaptive fractional order model, the discrete Fourier transform is applied to compute the fractional order difference as well as the dynamic evolution process. Experimental results show that the peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) of the proposed image denoising algorithm is better than that of other some algorithms. The proposed algorithm not only can keep the detailed image information and edge information, but also obtain a good visual effect.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Investigation of wave propagation in anisotropic plates via quasi 3D HSDT

  • Bouanati, Soumia;Benrahou, Kouider Halim;Atmane, Hassen Ait;Yahia, Sihame Ait;Bernard, Fabrice;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-96
    • /
    • 2019
  • A free vibration analysis and wave propagation of triclinic and orthotropic plate has been presented in this work using an efficient quasi 3D shear deformation theory. The novelty of this paper is to introducing this theory to minimize the number of unknowns which is three; instead four in other researches, to studying bulk waves in anisotropic plates, other than it can model plates with great thickness ratio, also. Another advantage of this theory is to permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Hamilton's equations are a very potent formulation of the equations of analytic mechanics; it is used for the development of wave propagation equations in the anisotropic plates. The analytical dispersion relationship of this type of plate is obtained by solving an eigenvalue problem. The accuracy of the present model is verified by confronting our results with those available in open literature for anisotropic plates. Moreover Numerical examples are given to show the effects of wave number and thickness on free vibration and wave propagation in anisotropic plates.

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

Impact ionization for GaAs using full band monte carlo simulation (Full 밴드 몬테칼로 시뮬레이션을 이용한 GaAs 임팩트이온화에 관한 연구)

  • 정학기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.112-119
    • /
    • 1996
  • Impact ionization model in GaAs has been presented by modified keldysh formula with two sets of power exponent of 7.8 and 5.6 in study. Impact ionization rate is derived from fermil's golden rule and ful lenergy band stucture based on empirical pseudopotential method. Impact ionization rates show anisotropic property in low energy region (<3eV), but isotropic in high energy region (3>eV). Full band monte calo simulator is coded for investigating the validity of the GaAs impact ionization model, and validity is checked by comparing impact ionization coefficients with experimental values and ones in anisotropic model. Valley transitions to energy alteration are explained by investigating electron motion in brillouin zone for full band model to electric field variation.

  • PDF

Numerical Analysis of a Diffuser Flow with Expansion and Streamline Curvature (확대 및 유선곡률을 가진 디퓨저 흐름의 수치해석)

  • 이연원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.595-608
    • /
    • 1998
  • A diffuser an important equipment to change kinetic energy into pressure energy has been studied for a long time. Though experimental and theoretical researches habe been done the understanding of energy transfer and detailed mechanism of energy dissipation is unclear. As far as numerical prediction of diffuser flows are concerned various numerical studies have also been done. On the contrary many turbulence models have constraint to the applicability of diffuser-like flows with expansion and streamline curvature. In order to obtain the reliability of k-$\varepsilon$ turbulence model modified combination turbulence models composed of the anisotropic k-$\varepsilon$model modified combination turbulence models composed of the anisotropic k-$\varepsilon$ model with Hanjalic-Launder's preferential normal strain and Pope's vortex stretching mechanism are proposed. The results of the present proposed models prove the fact that the coefficient of pressure and the shear stress are well predicted at the diffuser flow.

  • PDF

Accurate numerical modeling for ultrasonic testing of anisotropic welds in nuclear power plants (원전내 이방성 용접부에 대한 초음파검사의 정밀 수치 모델링)

  • Yim, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.101-105
    • /
    • 2001
  • Due to their elastic anisotropy, ultrasonic testing of austenitic welds, frequently used in nuclear power plants, is much more difficult than that of isotropic elements. For accurate testing of austenitic welds, ultrasonic wave phenomena therein must be full understood. This study uses an accurate and effective numerical model, the mass-spring lattice model, for such phenomena. By comparing the numerical results with the corresponding analytical results, it is shown that the model is capable of accurately predicting the generation, reflection, refraction, and scattering phenomena of ultrasonic waves in anisotropic austenite welds. Therefore, the mass-spring lattice model will provide a very useful tool for simulating ultrasonic testing of austenitic welds, and thus will contribute to the enhancement of reliability of such ultrasonic testing.

  • PDF

An Implicit Stress Integration for the Constitutive Relationship of Clays (점토의 구성관계에 대한 내재적인 응력적분)

  • 오세붕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.92-98
    • /
    • 1998
  • Nonlinear finite element analyses of one dimensional consolidation problem were performed using an anisotropic hardening constitutive model. For the analyses, the anisotropic hardening elasto-plastic constitutive model based on the generalized isotropic hardening(GIH) rule was implemented into a nonlinear finite element analysis program, PLASTIC. In order to preserve the accuracy of the finite element solution for nonlinear problems, an implicit stress integration algorithm was employed. A consistent tangent moduli could also ensure the quadratic convergence of Newton's method. As a result, the nonlinear solution was accurately calculated and was converged to be asymptotically quadratic. In a consolidation problem, the relationship between load and settlement and between settlement and time vertical was analyzed comparing with results using the Cam-clay type model and the final consolidation settlement and the duration of primary consolidation could be evaluated rigorously using the GIH constitutive model.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

Micromechanical Analysis on Anisotropic Elastic Deformation of Granular Soils (미시역학을 이용한 사질토의 이방적 탄성 변형 특성의 해석)

  • 정충기;정영훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.99-107
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments show that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic elastic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Generalized contact model for the irregular contact surface of soil particles is adopted to represent the force-displacement relationship in each contact point far the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic elastic moduli is derived in the isotropic stress condition. A detailed procedure to determine the model parameters is proposed with emphasis on the practical applicability of micromechanical program to analyze the elastic behavior of the granular soils.