• 제목/요약/키워드: anisotropic model

검색결과 440건 처리시간 0.033초

3차원 대칭단면 유동장에서의 개선된 난류모델 (Improved Turbulence Model on the 3 Dimensional Plane of Symmetry Flow)

  • 손창현
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 1997
  • Two versions of anisotropic k-ε turbulence model are incorporated in the modified k-ε model of Sohn et al. to avoid the need for the experimental normal stress value in the model and applied to convergent and divergent flows with strong and adverse pressure gradients in the plane of symmetry of a body of revolution. The models are the nonlinear k-ε model of Speziale and the anisotropic model of Nisizima & Yoshizawa. All of the models yield satisfactory results for relatively complex flow on a plane-of-symmetry boundary layer. The results of the models are compared with those results of experimental normal stress value.

  • PDF

비선형 이방성 모델을 이용한 흙의 변형 거동 예측 (Prediction of Soil Deformation with Nonlinear-Anisotropic Model)

  • 윤충구;정영훈;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

SCIENTIFIC UNDERSTANDING OF THE ANISOTROPIC UNIVERSE IN THE WARPED PRODUCTS SPACETIME FOR AEROSPACE POWER

  • CHOI, JAEDONG
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.479-489
    • /
    • 2015
  • We study the GMGHS spacetime to analyze anisotropic cosmology model which represents homogeneous but anisotropically expanding(contracting)cosmology. In this paper we investigate the solution of GMGHS spacetime in form of doubly warped products possessing warping functions and find the Ricci curvature associated with three phases in the evolution of the universe.

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용 (Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model)

  • 정충기;정영훈;윤충구
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.237-249
    • /
    • 2002
  • 파괴 이전 상태의 낮은 변형률 수준 하에서 정확한 지반 변형 거동 예측을 위해서는 흙의 비선형성과 이방성을 함께 고려해야 한다. 본 연구에서는 Ramberg-Osgood 식을 이용하여 흙의 비선형성을 모사하고 직교이방성을 도입하여 흙의 이방성을 구현한 새로운 모델을 개발하였다. 새롭게 개발한 비선형 이방성 모델을 여러 비교 대상 모델과 함께 간단한 경계치 문제와 원형 기초 문제에 적용하였다. 그 결과 이방성을 나타내는 탄성계수비가 체적 계수, 정지 토압계수, 그리고 유효 응력 경로에 큰 영향을 미치는 사실을 알아내었으며, 원형 기초 해석을 통해 초기 지중 응력 상태를 고려한 흙의 비선형성이 지표 침하에 큰 영향을 줌을 알 수 있었다.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

지반재료의 비등방경화 구성모델에 대한 응력적분 알고리즘 (Stress Integration Algorithm for an Anisotropic Hardening Constitutive Model of Geomaterials)

  • 오세붕;이진구;김태경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.343-350
    • /
    • 2005
  • A constitutive model was implemented in ABAQUS code. The constitutive equation can model the behavior for overall range of strain level from small to large deformation, which is based on anisotropic hardening rule and total stress concept. The formulation includes (1) finite strain formulation on the basis of Jaumann rate, (2) implicit stress integration and (3) consistent tangent moduli. Therefore the mathematical background was established in order that large deformation analysis can be performed accurately and efficiently with the anisotropic constitutive model. In the large deformation analyses, geometric nonlinearity was considered and the result of analyses with the proposed model was compared with that of Mises model for the overall strain range behavior.

  • PDF

Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.55-66
    • /
    • 2019
  • This work deals with the size-dependent wave propagation analysis of functionally graded (FG) anisotropic nanoplates based on a nonlocal strain gradient refined plate model. The present model incorporates two scale coefficients to examine wave dispersion relations more accurately. Material properties of FG anisotropic nanoplates are exponentially varying in the z-direction. In order to solve the governing equations for bulk waves, an analytical method is performed and wave frequencies and phase velocities are obtained as a function of wave number. The influences of several important parameters such as material graduation exponent, geometry, Winkler-Pasternak foundation parameters and wave number on the wave propagation of FG anisotropic nanoplates resting on the elastic foundation are investigated and discussed in detail. It is concluded that these parameters play significant roles on the wave propagation behavior of the nanoplates. From the best knowledge of authors, it is the first time that FG nanoplate made of anisotropic materials is investigated, so, presented numerical results can serve as benchmarks for future analysis of such structures.

기층의 이방성 거동이 아스팔트 도로 설계수명에 미치는 영향 (Influence of Anisotropic Behavior of Aggregate Base on Flexible Pavement Design Life)

  • 김성희
    • 한국도로학회논문집
    • /
    • 제11권1호
    • /
    • pp.187-194
    • /
    • 2009
  • 이 논문에서는 아스팔트 도로 설계에 필요한 기층골재 재료의 비선형 이방성을 고려한 연결함수를 개발하였다. 기층이 비선형 이방성 거동으로 해석되어졌을 경우, 선형 등방성 거동으로 해석되어질 때 나타나는 기층 하부내의 인장력을 감소시켜 보다 현실적인 응력분포를 보이게 된다. 그러나 현재까지 개발된 연결함수들은 대부분 기층이 선형 등방성 거동으로 해석하여 개발된 것이므로, 비선형 이방성 거동을 근간으로 하는 연결함수의 개발이 현실적인 도로 설계를 위해 필요하다. 이 논문에서 개발된 연결함수를 이용하여 도로를 설계한 결과 AASHTO의 연결함수를 이용하여 설계했을 경우보다, 기층 두께가 25mm 감소되는 결과를 보였으며, 이는 AASHTO 도로 설계가 보수적인 설계라는 것을 입증하였다.

  • PDF

축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교 (Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery)

  • 이공희;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF