• Title/Summary/Keyword: animal model of Parkinson's disease

Search Result 32, Processing Time 0.015 seconds

Effect of 6-Hydroxydopamine (6-OHDA) on the Expression of Hypothalamus-Pituitary Axis Hormone Genes in Male Rats (수컷 흰쥐의 시상하부-뇌하수체 축 호르몬 유전자 발현에 미치는 6-Hydroxydopamine(6-OHDA)의 영향)

  • Heo, Hyun-Jin;Ahn, Ryun-Sup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has been widely used to create animal model for Parkinson's disease (PD) due to its specific toxicity against dopaminergic (DA) neurons. Since DA signals modulate a broad spectrum of CNS physiology, one can expect profound alterations in neuroendocrine activities of both PD patients and 6-OHDA treated animals. Limited applications of 6-OHDA injection model, however, have been made on the studies of hypothalamuspituitary neuroendocrine circuits. The present study was performed to examine whether blockade of brain catecholamine (CA) biosynthesis with 6-OHDA can make any alteration in the transcriptional activities of hypothalamus-pituitary hormone genes in adult male rats. Three-month-old male rats (SD strain) were received 6-OHDA ($200{\mu}g$ in $10{\mu}\ell$ of saline/animal) by intracerebroventricular (icv) injection, and sacrificed after two weeks. To determine the mRNA levels of hypothalamuspituitary hormone genes, total RNAs were extracted and applied to the semi-quantitative RT-PCRs. The mRNA levels of tyrosine hydroxylase (TH), the rate-limiting enzyme for the catecholamine biosynthesis, were significantly lower than those from the control group (control:6-OHDA=1:0.72${\pm}$0.02AU, p<0.001), confirming the efficacy of 6-OHDA injection. The mRNA levels of gonadotropin-releasing hormone (GnRH) and corticotropin releasing hormone (CRH) in the hypothalami from 6-OHDA group were significantly lower than those from the control group (GnRH, control:6-OHDA=1:0.39${\pm}$0.03AU, p<0.001; CRH, control:6-OHDA=1:0.76${\pm}$0.07AU, p<0.01). There were significant decreases in the mRNA levels of common alpha subunit of glycoprotein homones (Cg$\alpha$), LH beta subunit (LH-$\beta$), and FSH beta subunit (FSH-$\beta$) in pituitaries from 6-OHDA group compared to control values (Cg$\alpha$, control:6-OHDA=1:0.81${\pm}$0.02AU, p<0.001; LH-$\beta$, control:6-OHDA=1:0.68${\pm}$0.04AU, p<0.001; FSH-$\beta$, control:6-OHDA=1:0.84${\pm}$0.05AU, p<0.001). Similarly, the level of adrenocorticotrophic hormone (ACTH) transcripts from 6-OHDA group was significantly lower than that from the control group (control: 6-OHDA=1:0.86${\pm}$0.04AU, p<0.01). The present study demonstrated that centrally injected DA neurotoxin could downregulate the transcriptional activities of the two hypothalamus-pituitary neuroendocrine circuits, i.e., GnRH-gonadotropins and CRH-ACTH systems. These results suggested that hypothalamic CA input might affect on the activities of gonad and adrenal through modulation of hypothalamus-pituitary function, providing plausible explanation for frequent occurrence of sexual dysfunction and poor stress-response in PD patients.

  • PDF

Does the Gut Microbiota Regulate a Cognitive Function? (장내미생물과 인지기능은 서로 연관되어 있는가?)

  • Choi, Jeonghyun;Jin, Yunho;Kim, Joo-Heon;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.747-753
    • /
    • 2019
  • Cognitive decline is characterized by reduced long-/short-term memory and attention span, and increased depression and anxiety. Such decline is associated with various degenerative brain disorders, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The increases in elderly populations suffering from cognitive decline create social problems and impose economic burdens, and also pose safety threats; all of these problems have been extensively researched over the past several decades. Possible causes of cognitive decline include metabolic and hormone imbalance, infection, medication abuse, and neuronal changes associated with aging. However, no treatment for cognitive decline is available. In neurodegenerative diseases, changes in the gut microbiota and gut metabolites can alter molecular expression and neurobehavioral symptoms. Changes in the gut microbiota affect memory loss in AD via the downregulation of NMDA receptor expression and increased glutamate levels. Furthermore, the use of probiotics resulted in neurological improvement in an AD model. PD and gut microbiota dysbiosis are linked directly. This interrelationship affected the development of constipation, a secondary symptom in PD. In a PD model, the administration of probiotics prevented neuron death by increasing butyrate levels. Dysfunction of the blood-brain barrier (BBB) has been identified in AD and PD. Increased BBB permeability is also associated with gut microbiota dysbiosis, which led to the destruction of microtubules via systemic inflammation. Notably, metabolites of the gut microbiota may trigger either the development or attenuation of neurodegenerative disease. Here, we discuss the correlation between cognitive decline and the gut microbiota.