• Title/Summary/Keyword: animal by-product

Search Result 859, Processing Time 0.031 seconds

Effect of Green Tea By-product on Performance and Body Composition in Broiler Chicks

  • Yang, C.J.;Yang, I.Y.;Oh, D.H.;Bae, I.H.;Cho, S.G.;Kong, I.G.;Uuganbayar, D.;Nou, I.S.;Choi, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.867-872
    • /
    • 2003
  • This experiment was conducted to determine the optimum level of green tea by-product (GTB) in diets without antibiotics and to evaluate its effect on broiler performances. A total of 140 Ross broilers were kept in battery cages for a period of 6 weeks. Dietary treatments used in this experiment were antibiotic free group (basal diet as a control), antibiotic added group (basal+0.05% chlortetracycline), GTB 0.5% (basal+GTB 0.5%), GTB 1% (basal+GTB 1%) and GTB 2% (basal+GTB 2%). Antibiotic added group showed significantly higher body weight gain than other treatments (p<0.05). However, no significant differences were observed in feed intake and feed efficiency among treatments (p>0.05). The addition of green tea by-product to diets tended to decrease blood LDL cholesterol content compared to control group although there were no significant differences among treatments (p>0.05). Addition of green tea by-product increased docosahexaenoic acid (DHA) in blood plasma and tended to decrease cholesterol content in chicken meat, but a significant difference was not observed (p>0.05). The values of TBA in chicken meat decreased in groups fed diets with green tea-by product and antibiotics compared to control group (p<0.05). The crude protein content in chicken meat was decreased slightly in treatments with green tea by-product and antibiotics supplementation. The abdominal fat was increased in chickens fed with diets with green tea by-product compared to the control (p<0.05).

Shrimp By-product Feeding and Growth Performance of Growing Pigs Kept on Small Holdings in Central Vietnam

  • Nguyen, Linh Q.;Everts, Henk;Beynen, Anton C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1025-1029
    • /
    • 2003
  • The effect studied was that of the feeding of shrimp by-product meal, as a source of eicosapentaenoic and docosahexaenoic acid, on growth performance and fatty acid composition of adipose tissue in growing pigs kept on small holdings in Central Vietnam. Shrimp by-product meal was exchanged with ruminant meal so that the diets contained either 0, 10 or 20% shrimp byproduct meal in the dry matter. The diets were fed on 6 different small-holder farms. The farmers fed a base diet according to their personal choice, but were instructed as to the use of shrimp by-product and ruminant meal. The diets were fed to the pigs from 70 to 126 days of age. There were three animals per treatment group per farm. The diets without and with 20% shrimp by-product meal on average contained 0.01 and 0.14 g docosahexaenoic acid/MJ of metabolisable energy (ME). Due to the higher contents of ash and crude fiber, the shrimp by-product meal containing diets had lower energy densities than the control diets. Eicosapentaenoic acid was not detectable in adipose tissue; the content of docosahexaenoic acid was generally increased after consumption of shrimp by-product meal. In spite of the concurrent high intakes of ash and crude fiber, the feeding of shrimp by-product meal had a general stimulatory effect on growth performance of the growing pigs. The intake of docosahexaenoic acid or its content in adipose tissue was not related with average daily gain. It is suggested that shrimp by-product meal may contain an unknown growth enhancing factor.

Immunomodulatory Properties of Lactobacillus plantarum NC8 Expressing an Anti-CD11c Single-Chain Fv Fragment

  • Liu, Jing;Yang, Guilian;Gao, Xing;Zhang, Zan;Liu, Yang;Yang, Xin;Shi, Chunwei;Liu, Qiong;Jiang, Yanlong;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.160-170
    • /
    • 2019
  • The lactic acid bacteria species Lactobacillus plantarum (L. plantarum) has been used extensively for vaccine delivery. Considering to the critical role of dendritic cells in stimulating host immune response, in this study, we constructed a novel CD11c-targeting L. plantarum strain with surface-displayed variable fragments of anti-CD11c, single-chain antibody (scFv-CD11c). The newly designed L. plantarum strain, named 409-aCD11c, could adhere and invade more efficiently to bone marrow-derived DCs (BMDCs) in vitro due to the specific interaction between scFv-CD11c and CD11c located on the surface of BMDCs. After incubation with BMDCs, the 409-aCD11c strain harboring a eukaryotic vector pValac-GFP could lead to more efficient expression of GFP compared with wild-type strains shown by flow cytometry analysis, indicating the enhanced translocation of pValac-GFP from L. plantarum to BMDCs. Similar results were also observed in an in vivo study, which showed that oral administration resulted in efficient expression of GFP in both Peyer's patches (PP) and mesenteric lymph nodes (MLNs) within 7 days after the last administration. In addition, the CD11c-targeting strain significantly promoted the differentiation and maturation of DCs, the differentiation of $IL-4^+$ and $IL-17A^+$ T helper (Th) cells in MLNs, as well as production of $B220^+$ $IgA^+$ B cells in the PP. In conclusion, this study developed a novel DC-targeting L. plantarum strain which could increase the ability to deliver eukaryotic expression plasmid to host cells, indicating a promising approach for vaccine study.

Effects of protein content and the inclusion of protein sources with different amino acid release dynamics on the nitrogen utilization of weaned piglets

  • Hu, Nianzhi;Shen, Zhiwen;Pan, Li;Qin, Guixin;Zhao, Yuan;Bao, Nan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.260-271
    • /
    • 2022
  • Objective: We aimed to investigate the effect of the differing amino acid (AA) release dynamics of two protein sources on the growth performance, nitrogen deposition, plasma biochemical parameters, and muscle synthesis and degradation of piglets when included in their diets at normal and low concentrations. Methods: Forty-eight piglets (Duroc×Landrace×Large White) with initial body weight of 7.45±0.58 kg were assigned to six groups and fed one of 6 diets. The 6 dietary treatments were arranged by 3×2 factorial with 3 protein sources and 2 dietary protein levels. They are NCAS (a normal protein content with casein), NBlend (a normal protein content with blend of casein and corn gluten meal), NCGM (a normal protein content with corn gluten meal), LCAS (a low protein content with casein), LBlend (a low protein content with blend of casein and corn gluten meal), LCGM (a low protein content with corn gluten meal). The release dynamics of AA in these diets were determined by in vitro digestion. The digestibility, utilization and biological value of nitrogen in piglets were determined by micro Kjeldahl method. Plasma insulin was measured by enzyme-linked immunosorbent assay kits. The protein expression of mediators of muscle synthesis and degradation was determined by western blotting. Results: Although the consumption of a low-protein diet supplemented with crystalline AA was associated with greater nitrogen digestion and utilization (p<0.05), the final body weight, growth performance, nitrogen deposition, and phosphorylation of ribosomal protein S6 kinase 1 and eIF4E binding protein 1 in the muscle of pigs in the low-protein diet-fed groups were lower than those of the normal-protein diet-fed groups (p<0.05) because of the absence of non-essential AA. Because of the more balanced release of AA, the casein (CAS) and Blend-fed groups showed superior growth performance, final body weight and nitrogen deposition, and lower expression of muscle ring finger 1 and muscle atrophy F-box than the CGM-fed groups (p<0.05). Conclusion: We conclude that the balanced release of AA from CAS containing diets and mixed diets could reduce muscle degradation, favor nitrogen retention, % intake and improve growth performance in pigs consuming either a normal- or low-protein diet.

Effects of citrus pulp, fish by-product and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs

  • Noh, Hyun Suk;Ingale, Santosh Laxman;Lee, Su Hyup;Kim, Kwang Hyun;Kwon, Ill Kyong;Kim, Young Hwa;Chae, Byung Jo
    • Journal of Animal Science and Technology
    • /
    • v.56 no.3
    • /
    • pp.10.1-10.7
    • /
    • 2014
  • An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace ${\times}$ Yorkshire ${\times}$ Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater (p < 0.05) G:F (phase I, phase II, and overall) as well as ATTD of DM, GE, and ash (phase I) than pigs fed control diet. Dietary treatments also had significant linear effects on total anaerobic bacteria populations by d 14 and 28. In addition, piglets fed diet supplemented with 5.0% citrus pulp, fish by-product and B. subtilis fermentation biomass showed greater (p < 0.05) fecal total anaerobic bacteria populations (d 14 and 28) than pigs fed control diet. Dietary treatments had no significant effects (linear or quadratic) on average daily gain (ADG), average dial feed intake (ADFI; phase I, phase II, and overall), or fecal populations of Bifidobacterium spp., Clostridium spp., and coliforms (d 14 and 28). These results indicate that dietary supplementation with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.

The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2

  • Pan, Li;Zhao, Yuan;Yuan, Zhijie;Farouk, Mohammed Hamdy;Zhang, Shiyao;Bao, Nan;Qin, Guixin
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins ${\alpha}2$, ${\alpha}3$, ${\alpha}6$, ${\beta}1$, and ${\beta}4$ in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin ${\alpha}2$, ${\alpha}6$, and ${\beta}1$ were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.

Surface-Displayed Porcine IFN-λ3 in Lactobacillus plantarum Inhibits Porcine Enteric Coronavirus Infection of Porcine Intestinal Epithelial Cells

  • Liu, Yong-Shi;Liu, Qiong;Jiang, Yan-Long;Yang, Wen-Tao;Huang, Hai-Bin;Shi, Chun-Wei;Yang, Gui-Lian;Wang, Chun-Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.515-525
    • /
    • 2020
  • Interferon (IFN)-λ plays an essential role in mucosal cells which exhibit strong antiviral activity. Lactobacillus plantarum (L. plantarum) has substantial application potential in the food and medical industries because of its probiotic properties. Alphacoronaviruses, especially porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), cause high morbidity and mortality in piglets resulting in economic loss. Co-infection by these two viruses is becoming increasingly frequent. Therefore, it is particularly important to develop a new drug to prevent diarrhea infected with mixed viruses in piglets. In this study, we first constructed an anchored expression vector with CWA (C-terminal cell wall anchor) on L. plantarum. Second, we constructed two recombinant L. plantarum strains that anchored IFN-λ3 via pgsA (N-terminal transmembrane anchor) and CWA. Third, we demonstrated that both recombinant strains possess strong antiviral effects against coronavirus infection in the intestinal porcine epithelial cell line J2 (IPEC-J2). However, recombinant L. plantarum with the CWA anchor exhibited a more powerful antiviral effect than recombinant L. plantarum with pgsA. Consistent with this finding, Lb.plantarum-pSIP-409-IFN-λ3-CWA enhanced the expression levels of IFN-stimulated genes (ISGs) (ISG15, OASL, and Mx1) in IPEC-J2 cells more than did recombinant Lb.plantarum-pSIP-409-pgsA'-IFN-λ3. Our study verifies that recombinant L. plantarum inhibits PEDV and TGEV infection in IPEC-J2 cells, which may offer great potential for use as a novel oral antiviral agent in therapeutic applications for combating porcine epidemic diarrhea and transmissible gastroenteritis. This study is the first to show that recombinant L. plantarum suppresses PEDV and TGEV infection of IPEC-J2 cells.