• Title/Summary/Keyword: animal breeding

Search Result 1,540, Processing Time 0.024 seconds

Genome-wide association study reveals genetic loci and candidate genes for average daily gain in Duroc pigs

  • Quan, Jianping;Ding, Rongrong;Wang, Xingwang;Yang, Ming;Yang, Yang;Zheng, Enqin;Gu, Ting;Cai, Gengyuan;Wu, Zhenfang;Liu, Dewu;Yang, Jie
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.480-488
    • /
    • 2018
  • Objective: Average daily gain (ADG) is an important target trait of pig breeding programs. We aimed to identify single nucleotide polymorphisms (SNPs) and genomic regions that are associated with ADG in the Duroc pig population. Methods: We performed a genome-wide association study involving 390 Duroc boars and by using the PorcineSNP60K Beadchip and two linear models. Results: After quality control, we detected 3,5971 SNPs, which included seven SNPs that are significantly associated with the ADG of pigs. We identified six quantitative trait loci (QTL) regions for ADG. These QTLs included four previously reported QTLs on Sus scrofa chromosome (SSC) 1, SSC5, SSC9, and SSC13, as well as two novel QTLs on SSC6 and SSC16. In addition, we selected six candidate genes (general transcription factor 3C polypeptide 5, high mobility group AT-hook 2, nicotinamide phosphoribosyltransferase, oligodendrocyte transcription factor 1, pleckstrin homology and RhoGEF domain containing G4B, and ENSSSCG00000031548) associated with ADG on the basis of their physiological roles and positional information. These candidate genes are involved in skeletal muscle cell differentiation, diet-induced obesity, and nervous system development. Conclusion: This study contributes to the identification of the casual mutation that underlies QTLs associated with ADG and to future pig breeding programs based on marker-assisted selection. Further studies are needed to elucidate the role of the identified candidate genes in the physiological processes involved in ADG regulation.

EFFECT OF BREEDING LENGTH ON GENETIC IMPROVEMENT IN JAPANESE HOLSTEIN POPULATION

  • Terawaki, Y.;Shimizu, H.;Fukui, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.4
    • /
    • pp.363-370
    • /
    • 1996
  • The effect of breeding length of sire on genetic progress was examined in the Holstein dairy cattle population in Japan. Genetic progress was extimated by gene flow method. Breeding length of sires directly influences the replacement rates of sires and the selection intensity of sires because there are a fixed number of progeny tested young bulls per year. As breeding length of sires increased, rate of gene flow decreased and average proportions of genes deriving from selected animals had lower asymptotic values. When breeding length was short, average proportions of genes required a longer period to converge to asymptotic values. Changes of Rcow-sire's(sire to breed recorded cows) and Ncow-sire's(sire to breed non recorded cows) breeding length influenced not only transmission of their genes but also that of genes derived from all other selected animals. Irrespective of whether the discount rate was assumed to be 0 or 6%, longer term (${\geq}$ 20 years) expected total genetic improvement was maximized by a sire breeding length of five years. For shorter term assessment(10 years), genetic improvement was maximized by a sire breeding length of three years. There was a linear increase in the contribution of the sire to bulls pathway to the total genetic improvement, with increase in the term of assessment.

Comparative assessment of the effective population size and linkage disequilibrium of Karan Fries cattle revealed viable population dynamics

  • Shivam Bhardwaj;Oshin Togla;Shabahat Mumtaz;Nistha Yadav;Jigyasha Tiwari;Lal Muansangi;Satish Kumar Illa;Yaser Mushtaq Wani;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.795-806
    • /
    • 2024
  • Objective: Karan Fries (KF), a high-producing composite cattle was developed through crossing indicine Tharparkar cows with taurine bulls (Holstein Friesian, Brown Swiss, and Jersey), to increase the milk yield across India. This composite cattle population must maintain sufficient genetic diversity for long-term development and breed improvement in the coming years. The level of linkage disequilibrium (LD) measures the influence of population genetic forces on the genomic structure and provides insights into the evolutionary history of populations, while the decay of LD is important in understanding the limits of genome-wide association studies for a population. Effective population size (Ne) which is genomically based on LD accumulated over the course of previous generations, is a valuable tool for e valuation of the genetic diversity and level of inbreeding. The present study was undertaken to understand KF population dynamics through the estimation of Ne and LD for the long-term sustainability of these breeds. Methods: The present study included 96 KF samples genotyped using Illumina HDBovine array to estimate the effective population and examine the LD pattern. The genotype data were also obtained for other crossbreds (Santa Gertrudis, Brangus, and Beefmaster) and Holstein Friesian cattle for comparison purposes. Results: The average LD between single nucleotide polymorphisms (SNPs) was r2 = 0.13 in the present study. LD decay (r2 = 0.2) was observed at 40 kb inter-marker distance, indicating a panel with 62,765 SNPs was sufficient for genomic breeding value estimation in KF cattle. The pedigree-based Ne of KF was determined to be 78, while the Ne estimates obtained using LD-based methods were 52 (SNeP) and 219 (genetic optimization for Ne estimation), respectively. Conclusion: KF cattle have an Ne exceeding the FAO's minimum recommended level of 50, which was desirable. The study also revealed significant population dynamics of KF cattle and increased our understanding of devising suitable breeding strategies for long-term sustainable development.

Identification of SNPs in Cellular Retinol Binding Protein 1 and Cellular Retinol Binding Protein 3 Genes and Their Associations with Laying Performance Traits in Erlang Mountainous Chicken

  • Wang, Yan;Xiao, Li-Hua;Zhao, Xiao-Ling;Liu, Yi-Ping;Zhu, Qing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1075-1081
    • /
    • 2014
  • CRBP1 (cellular retinol binding protein 1) and CRBP3 (cellular retinol binding protein 3), are important components of the retinoid signaling pathway and take part in vitamin A absorption, transport and metabolism. Based on the role of vitamin A in chicken laying performance, we investigated the polymorphism of CRBP1 and CRBP3 genes in 349 chickens using single strand conformation polymorphism and DNA sequencing methods. Only one polymorphism was identified in the third intron of CRBP1, two polymorphisms were detected in CRBP3; they were located in the second intron and the third intron respectively. The association studies between these three SNPs and laying performance traits were performed in Erlang mountainous chicken. Notably, the SNP g.14604G>T of CRBP1 was shown to be significantly associated with body weight at first egg (BWFE), age at first egg (AFE), weight at first egg (WFE) and total number of eggs with 300 age (EN). The CRBP3 polymorphism g.934C>G was associated with AFE, and the g.1324A>G was associated with AFE and BWFE, but none of these polymorphisms were associated with egg quality traits. Haplotype combinations constructed on these two SNPs of CRBP3 gene were associated with BWFE and AFE. In particular, diplotype H2H2 had positive effect on AFE, BWFE, EN, and average egg-laying interval. We herein describe for the first time basic research on the polymorphism of chicken CRBP1 and CRBP3 genes that is predictive of genetic potential for laying performance in chicken.

Mapping of Quantitative Trait Loci on Porcine Chromosome 7 Using Combined Data Analysis

  • Zuo, B.;Xiong, Y.Z.;Su, Y.H.;Deng, C.Y.;Lei, M.G.;Zheng, R.;Jiang, S.W.;Li, F.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1350-1353
    • /
    • 2004
  • To further investigate the regions on porcine chromosome 7 that are responsible for economically important traits, phenotypic data from a total of 287 F2 individuals were collected and analyzed from 1998 to 2000. All animals were genotyped for eight microsatellite loci spanning the length of chromosome 7. QTL analysis was performed using interval mapping under the line-cross model. A permutation test was used to establish significance levels associated with QTL effects. Observed QTL effects were (chromosomewide significance, position of maximum significance in centimorgans): Birth weight (<0.01, 3); Carcass length (<0.05, 80); Longissimus muscle area (<0.01, 69); Skin percentage (<0.01, 69); Bone percentage (<0.01, 74); Fat depths at shoulder (<0.05, 54);Mean fat depth (<0.05, 81); Moisture in m. Longissimus Dorsi (<0.05, 88). Additional evidence was also found which suggested QTL for dressing percentage and fat depths at buttock. This study offers confirmation of several QTL affecting growth and carcass traits on SSC7 and provides an important step in the search for the actual major genes involved in the traits of economic interest.

Full-length cDNA, Expression Pattern and Association Analysis of the Porcine FHL3 Gene

  • Zuo, Bo;Xiong, YuanZhu;Yang, Hua;Wang, Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1473-1477
    • /
    • 2007
  • Four-and-a-half LIM-only protein 3 (FHL3) is a member of the LIM protein superfamily and can participate in mediating protein-protein interaction by binding one another through their LIM domains. In this study, the 5'- and 3'- cDNA ends were characterized by RACE (Rapid Amplification of the cDNA Ends) methodology in combination with in silico cloning based on the partial cDNA sequence obtained. Bioinformatics analysis showed FHL3 protein contained four LIM domains and four LIM zinc-binding domains. In silico mapping assigned this gene to the gene cluster MTF1-INPP5B-SF3A3-FHL3-CGI-94 on pig chromosome 6 where several QTL affecting intramuscular fat and eye muscle area had previously been identified. Transcription of the FHL3 gene was detected in spleen, liver, kidney, small intestine, skeletal muscle, fat and stomach, with the greatest expression in skeletal muscle. The A/G polymorphism in exon II was significantly associated with birth weight, average daily gain before weaning, drip loss rate, water holding capacity and intramuscular fat in a Landrace-derived pig population. Together, the present study provided the useful information for further studies to determine the roles of FHL3 gene in the regulation of skeletal muscle cell growth and differentiation in pigs.

Association of the Porcine Cluster of Differentiation 4 Gene with T Lymphocyte Subpopulations and Its Expression in Immune Tissues

  • Xu, Jingen;Liu, Yang;Fu, Weixuan;Wang, Jiying;Wang, Wenwen;Wang, Haifei;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.463-469
    • /
    • 2013
  • Cluster of differentiation 4 (CD4) is mainly expressed on $CD4^+$ T cells, which plays an important role in immune response. The aim of this study was to detect the association between polymorphisms of the CD4 gene and T lymphocyte subpopulations in pigs, and to investigate the effects of genetic variation on the CD4 gene expression level in immune tissues. Five missense mutations in the CD4 gene were identified using DNA pooling sequencing assays, and two main haplotypes (CCTCC and AGCTG) in strong linkage disequilibrium (with frequencies of 50.26% and 46.34%, respectively) were detected in the population of Large White pigs. Our results indicated that the five SNPs and the two haplotypes were significantly associated with the proportions of $CD4^-CD8^-$, $CD4^+CD8^+$, $CD4^+CD8^-$, $CD4^+$ and $CD4^+/CD8^+$ in peripheral blood (p<0.05). Gene expression analysis showed the mRNA level of the CD4 gene in thymus was significantly higher than that in lymph node and spleen (p<0.05). However, no significant difference was observed between animals with CCTCC/CCTCC genotype and animals with AGCTG/AGCTG genotype in the three immune tissues (p>0.05). These results indicate that the CD4 gene may influence T lymphocyte subpopulations and can be considered as a candidate gene affecting immunity in pigs.

Multiomics analyses of Jining Grey goat and Boer goat reveal genomic regions associated with fatty acid and amino acid metabolism and muscle development

  • Zhaohua Liu;Xiuwen Tan;Qing Jin;Wangtao Zhan;Gang Liu;Xukui Cui;Jianying Wang;Xianfeng Meng;Rongsheng Zhu;Ke Wang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.982-992
    • /
    • 2024
  • Objective: Jining Grey goat is a local Chinese goat breed that is well known for its high fertility and excellent meat quality but shows low meat production performance. Numerous studies have focused on revealing the genetic mechanism of its high fertility, but its highlighting meat quality and muscle growth mechanism still need to be studied. Methods: In this research, an integrative analysis of the genomics and transcriptomics of Jining Grey goats compared with Boer goats was performed to identify candidate genes and pathways related to the mechanisms of meat quality and muscle development. Results: Our results overlap among five genes (ABHD2, FN1, PGM2L1, PRKAG3, RAVER2) and detected a set of candidate genes associated with fatty acid metabolism (PRKAG3, HADHB, FASN, ACADM), amino acid metabolism (KMT2C, PLOD3, NSD2, SETDB1, STT3B, MAN1A2, BCKDHB, NAT8L, P4HA3) and muscle development (MSTN, PPARGC1A, ANKRD2). Several pathways have also been detected, such as the FoxO signaling pathway and Apelin signaling pathway that play roles in lipid metabolism, lysine degradation, N-glycan biosynthesis, valine, leucine and isoleucine degradation that involving with amino acid metabolism. Conclusion: The comparative genomic and transcriptomic analysis of Jining Grey goat and Boer goat revealed the mechanisms underlying the meat quality and meat productive performance of goats. These results provide valuable information for future breeding of goats.

Validation of 17 Microsatellite Markers for Parentage Verification and Identity Test in Chinese Holstein Cattle

  • Zhang, Yi;Wang, Yachun;Sun, Dongxiao;Yu, Ying;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.425-429
    • /
    • 2010
  • To develop an efficient DNA typing system for Chinese Holstein cattle, 17 microsatellites, which were amplified in four fluorescent multiplex reactions and genotyped by two capillary electrophoresis injections, were evaluated for parentage verification and identity test. These markers were highly polymorphic with a mean of 8.35 alleles per locus and an average expected heterozygosity of 0.711 in 371 individuals. Parentage exclusion probability with only one sampled parent was approximately 0.999. Parentage exclusion probability when another parent' genotype was known was over 0.99999. Overall probability of identity, i.e. the probability that two animals share a common genotype by chance, was $1.52{\times}10^{-16}$. In a test case of parentage assignment, the 17 loci assigned 31 out of 33 cows to the pedigree sires with 95% confidence, while 2 cows were excluded from the paternity relationship with candidate sires. The results demonstrated the high efficacy of the 17 markers in parentage analysis and individual identification for Chinese Holstein cattle.

The Porcine FoxO1, FoxO3a and FoxO4 Genes: Cloning, Mapping, Expression and Association Analysis with Meat Production Traits

  • Yu, Jing;Zhou, Quan-Yong;Zhu, Meng-Jin;Li, Chang-Chun;Liu, Bang;Fan, Bin;Zhao, Shu-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.627-632
    • /
    • 2007
  • FoxO1, FoxO3a and FoxO4 belong to the FoxO gene family, which play important roles in the PI3K/PKB pathway. In this study, we cloned the porcine FoxO1, FoxO3a and FoxO4 sequences and assigned them to SSC11p11-15, SSC1p13 and SSC xq13 using somatic cell hybrid panel (SCHP) and radiation hybrid panel (IMpRH). RT-PCR results showed that these three genes are expressed in multiple tissues. Sequencing of PCR products from different breeds identified a synonymous T/C polymorphism in exon 2 of FoxO3a. This FoxO3a single nucleotide polymorphism (SNP) can be detected by AvaII restriction enzyme. The allele frequencies of this SNP were investigated in Dahuabai, Meishan, Tongcheng, Yushan, Large White, and Duroc pigs. Association of the genotypes with growth and carcass traits showed that different genotypes of FoxO3a were associated with carcass length and backfat thickness between 6th and 7th ribs (BTR) and drip loss (p<0.05).