• Title/Summary/Keyword: angular distribution

Search Result 343, Processing Time 0.03 seconds

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

The Study of Hanji and Washi Fiber Orientation using Image analysis (Image analysis에 의한 한지와 화지의 섬유 배향성 연구)

  • Han, Yoon-Hee;Enomae, Toshiharu;Isogai, Akira
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.11a
    • /
    • pp.89-96
    • /
    • 2006
  • To estimate the manufacturing district and generation of ancient paper as a cultural property, fiber orientation is one of the criteria. Image analysis using fast Fourier transform with suitable modifications was demonstrated to be an effective means to determine angle and intensity of fiber orientation as a nondestructive method. Binarization process of microscopic images of paper surface and precise calculation for average Fourier coefficients as an angular distribution by linear interpolation were newly introduced in the procedures to improve the accuracy. This analysis method was applied to digital optical micrographs of paper surfaces. Korea and Japanese traditional hand making papers were well distinguished. Korea and Japanese papers made in the traditional ways showed its own characteristic orientation behavior in accordance with the motion of a bamboo wire.

  • PDF

Microwave Imaging of a Large High Contrast Scatterer by Using the Hybrid Algorithm Combining a Levenberg-Marquardt and a Genetic Algorithm (Levenberg-Marquardt와 유전 알고리듬을 결합한 잡종 알고리듬을 이용한 거대 강산란체의 초고주파 영상)

  • 박천석;양상용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.534-544
    • /
    • 1997
  • The permittivity distribution of a two-dimensional high-contrast object with large size, which leads to the global minimum of cost function, is reconstructed by iteratively using the hybrid algorithm of Levenberg-magquardt algorithm(LMA) plus Genetic Algorithm(GA). The scattered fields calculated in a cost function are expanded in angular spectral modes, of which only effective propagating modes are used. The definition of cost function based on the effective propagating modes enables us to formulate the minimum number of incident waves for the reconstruction of object. It is numerically shown that LMA has an advantage of fast convergence but can't reconstruct a high-contrast object with large size and GA can reconstruct a high-contrast object with large size but has an disadvantage of slow convergence, whereas an inverse scattering technique using the hybrid algorithm adopts only advantages of LMA and GA.

  • PDF

The Influence of Collision Energy on the Reaction H+HS→H2+S

  • Liu, Yanlei;Zhai, Hongsheng;Zhu, Zunlue;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3350-3356
    • /
    • 2013
  • Quasi-classical trajectory calculations have been carried out for the reaction H+HS by using the newest triplet 3A" potential energy surface (PES). The effects of the collision energy and reagent initial rotational excitation are studied. The cross sections and thermal rate constants for the title reaction are calculated. The results indicate that the integral cross sections (ICSs) are sensitive to the collision energy and almost independent to the initial rotational states. The ro-vibrational distributions for the product $H_2$ at different collision energies are presented. The investigations on the vector correlations are also performed. It is found that the collision energies play a postive role on the forward scatter of the product molecules. There is a negative influence on both the alignment and orientation of the product angular momentum for low collision energy at low energy region. Whereas the influence of collision energy is not obvious at high energy region.

Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct (곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

Distributions of the velocity and pressure of the pulsatile laminar flow in a pipe with the various frequencies (주파수의 변화에 따른 원형관로내 층류맥동유동의 속도와 압력의 분포)

  • Bae, S.C.;Mo, Y.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.561-571
    • /
    • 1997
  • In this paper, the fundamental equations are developed for the pulsatile laminar flow generated by changing the oscillatory flow with $0{\leq}f{\leq}48Hz$ into a steady one with $0{\leq}Re{\leq}2500$ in a rigid circular pipe. Analytical solutions for the wave propagation factor k, the axial distributions of cross-sectional mean velocity $u_m$ and pressure p are schematically derived and confirmed experimentally. The axial distributions of centerline velocity and pressure were measured by using Pitot-static tubes and strain gauge type pressure transducers, respectively. The cross-sectional mean velocity was calculated from the centerline velocity by applying the parabolic distribution of the laminar flow and it was confirmed by using the ultrasonic flowmeter. It was found that the axial distributions of cross-sectional mean velocity and pressure agree well with theoretical ones and depend only on the Reynolds number Re and angular velocity $\omega$.

  • PDF

Channel Correlation Analysis using MIMO Channel Measurement Parameters at Domestic 700MHz band (국내 700 MHz 대역에서 MIMO 채널 측정 파라미터를 이용한 채널 상관도 분석)

  • Jung, Myoung-Won;Chong, Young-Jun;Pack, Jeong-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • In the next generation of mobile communication systems, high data rates and high capacity will be possible if multiple antennas are used at new frequencies. This paper presents the correlations between channel parameter path loss (PL), delay spread (DS), angular spread (AS) and K-factor established based on channel measurements. To avoid interference from Korean DTV broadcasting, we measured the channel characteristics in urban/rural/suburban areas on Jeju Island using a channel sounder and $4{\times}4$ antennas. The correlations between channel parameter show that the wireless channel characteristics can be determined and effective communication system design can be produced for use in similar environments.

Wind Attribute Time Series Modeling & Forecasting in IRAN

  • Ghorbani, Fahimeh;Raissi, Sadigh;Rafei, Meysam
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.3 no.3
    • /
    • pp.14-26
    • /
    • 2015
  • A wind speed forecast is a crucial and sophisticated task in a wind farm for planning turbines and corresponds to an estimate of the expected production of one or more wind turbines in the near future. By production is often meant available power for wind farm considered (with units KW or MW depending on both the wind speed and direction. Such forecasts can also be expressed in terms of energy, by integrating power production over each time interval. In this study, we technically focused on mathematical modeling of wind speed and direction forecast based on locally data set gathered from Aghdasiyeh station in Tehran. The methodology is set on using most common techniques derived from literature review. Hence we applied the most sophisticated forecasting methods to embed seasonality, trend, and irregular pattern for wind speed as an angular variables. Through this research, we carried out the most common techniques such as the Box and Jenkins family, VARMA, the component method, the Weibull function and the Fourier series. Finally, the best fit for each forecasting method validated statistically based on white noise properties and the final comparisons using residual standard errors and mean absolute deviation from real data.

Ball Milling and Sintering Behavior of High Speed Steel Powders Containing VC and Co (VC 및 Co함유 고속도공구강 분말의 볼밀링 및 소결거동)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.181-187
    • /
    • 1996
  • Cobalt and VC powders were ball milled with M2 grade high speed steel powders under various ball to powder ratios. The powders milled under higher ball to powder ratio become finer, more irregular and have a broader size distribution, and thus possess a lower compressibility and a better sinterability regarding densification. Increasing the ball to powder ratio lowered the sintering temperature to obtain the density level necessary to isolate all the pores. Lowering the sintering temperature is very critical to maintain fine microstructure since grain and carbide coarsening are accelerated by higher sintering temperature due to more liquid phase formation. The powders obtained by ball milling at 20 to 1 ratio has the lowest compressibility but has the best sinterability, almost compatible to unmilled pure M2 powders. A sintered body over 97% theoretical density with fine microstructures having average grain size of ~10 microns was obtained from the powder by sintering at 1260 $^{\circ}C$ for 1 hour in vacuum. XRD results indicate that two types of carbides are mainly present in the sintered structure, MC and $M_{6}C$ type. The MC type carbides are more or less round shaped and mainly located at the grain boundaries whereas the $M_{6}C$ type are angular shaped and mainly located inside the grains.

  • PDF

A Study on the Hybrid-ECAP Process to Produce Ultra-Fine Materials (초미세 결정립 조직을 만들기 위한 복합전단가공법에 관한 연구)

  • Lee, Ju-Hyun;Lee, Jin-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.83-91
    • /
    • 2008
  • The development of the equal channel angular pressing(ECAP) process in metals has recently provided a feasible solution to produce ultra-fine or nano-grained bulk materials with tailored material properties. However, ECAP process is difficult to scale up commercially due to requirements of an excessive load. In this paper, a new Hybrid-ECAP process with torsional die is considered to obtain materials of ultra-fine grain structure under low forming load. An upper bound analysis and numerical simulation (DEFORM 3D, a commercial FEM code) are carried out on the torsional die. By the upper bound analysis, analytical expression for the compression force and rotation speed are obtained. By the FEM analysis, the distribution of strain, stress and deformation are obtained. These results show that the Hybrid-ECAP is a useful process because this process can obtain the homogeneous deformations with relatively low forming load. Additionally, due to decreased forming load, die life can be improve.