• 제목/요약/키워드: angles of attack

검색결과 262건 처리시간 0.022초

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

대칭단면을 갖는 3 차원 날개의 지면고도에 따른 공력특성과 끝단와 거동 (Aerodynamic Characteristics and Wing Tip Vortex Behavior of Three-Dimensional Symmetric Wing According to Heights)

  • 유영현;이상환;이주희
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1161-1169
    • /
    • 2012
  • 지면효과를 받는 3차원 대칭단면 날개(NACA0015)의 공력특성과 끝단와(wing-tip vortex)의 거동에 관하여 수치적 연구를 수행하였다. 날개가 지면에 근접함에 따라 공기 역학적 특성과 끝단와의 거동은 두 가지 상이한 현상(지면효과와 벤츄리효과)에 의하여 영향을 받는다. 지면효과는 양력을 증가시키며 항력을 감소시켜 공기역학적 특성을 향상시키는 반면 벤츄리효과는 음의 양력을 만들고 항력을 급격히 증가시킨다. 대칭형 익형은 받음각에 따라 이러한 현상이 모두 나타난다. NACA0015의 경우 받음각이 4도 보다 작은 경우 벤츄리효과가 지배적이며 받음각이 이 보다 큰 경우 지면효과가 지배적으로 나타난다. 특이하게 4도에서는 이 두 가지 현상이 모두 나타났다. 벤츄리효과가 지배적인 경우 지면과 날개 사이의 흡입현상의 증가로 인하여 끝단와는 날개의 안쪽으로 끌려 들어오는 반면 지면효과가 지배적인 경우 끝단와는 날개의 바깥쪽으로 밀려나가는 현상을 알 수 있었다.

중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향 (Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration)

  • 손명환;정형석
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.9-17
    • /
    • 2005
  • 본 연구에서는 중앙동체 구조물이 삼각날개의 와류유동 형성에 어떤 영향을 미치는지를 규명하기 위해 Leading Edge Extension(LEX)이 부착된 삼각날개 모델에 대해 유동 가시화(flow visualization)와 Particle Image Velocimetry(PIV) 측정의 풍동실험을 수행하였다. 이 두 실험방법에 의한 정성적 연구결과에서는 비교적 작은 받음각과 옆미끄럼각의 범위 내에서 중앙동체가 삼각날개 와류유동 특성에 미치는 영향이 미미한 것으로 관측되었다. 그러나 압력분포 측정에 의한 정량적 분석을 통해서는 고 받음각 및 큰 옆미끄럼각이 존재하는 경우 와류유동에 대한 중앙동체 영향이 현저히 증가하는 것을 확인할 수 있었다. 본 LEX-삼각날개 형상에서는 중앙동체의 영향은 옆미끄럼각의 영향에 비하여 크지 않다는 것도 확인할 수 있었다.

구리합금그물감의 공극률 및 영각에 의한 유속 감소와 유체역학적 특성에 관한 연구 (A study on flow velocity reduction and hydrodynamic characteristics of copper alloy netting by solidity ratios and attack angles)

  • 강아림;이지훈
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.62-73
    • /
    • 2019
  • Recently, copper alloy netting has been proposed as a material for aquaculture facilities that can be set in harsh offshore environments. To design a cage made of copper alloy netting, it is necessary to calculate the flow of water through the netting and force of external sources on the netting. Therefore, this study measured and analyzed the current velocity reduction after passing through the netting and the hydrodynamic forces acting on the netting using copper alloy netting with nine solidity ratios. As a result of the reduction rate of the flow velocity through the netting, the flow reduction rate was increased as the solidity ratio of netting was increased. The flow reduction rate was also increased as the attack angle on the netting was decreased. In analyzing the resistance on the netting, we also discovered that resistance was increased with increase in the flow velocity and solidity ratio. An analysis of the hydrodynamic coefficient acting on the netting is shown that the drag coefficient tends to increase as the attack angle increases. We also analyzed the hydrodynamic coefficient according to the variation of the Reynolds number. When the drag coefficients acting on the netting were analyzed with the different Reynolds numbers, the Reynolds number increased from over 0.3 m/s to a relative constant. Finally, the copper alloy nettings had a smaller velocity reduction rate when comparing the flow velocity reduction rate between copper alloy nettings and nylon nettings.

받음각이 있는 타원형 실린더 주위의 비정상 유동해석: 항력 및 양력 고찰 (Unsteady Flow Analysis around an Elliptic Cylinder at Various angles of Attack: Drag and Lift Forces)

  • 박영빈;김문상;김학봉
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.1-8
    • /
    • 2005
  • 타원형 실린더의 두께와 받음각 및 레이놀즈수가 실린더에 작용하는 항력과 양력에 어떤 영향을 미치는가를 고찰하기 위해서 수치적 연구를 수행하였다. 타원형 실린더 주위를 흐르는 비정상 점성 유동을 해석하기 위하여 SIMPLER 기법을 이용한 2차원 비압축성 Navier-Stokes 유동 해석 프로그램을 개발하였으며, 두께-시위길이 비가 0.2, 0.4, 0.6인 타원형 실린더 형상에 대해서 레이놀즈수가 400, 600인 조건, 그리고 받음각이 10도, 20도, 30도인 조건하에서 유동을 해석하였다. 본 연구를 통해서 실린더 두께 비와 받음각 및 레이놀즈수가 항력과 양력 계수의 시간 평균값 및 진폭의 크기, 그리고 진동 주기에 크게 영향을 미침을 확인할 수 있었다.

삼각날개/LEX에서의 와류 상호작용 특성 (Vortex Interaction Characteristics of a Delta Wing/LEX)

  • 이기영;손명환
    • 한국군사과학기술학회지
    • /
    • 제5권3호
    • /
    • pp.77-86
    • /
    • 2002
  • An experimental study of the vortex interaction characteristics of a delta wing/LEX configuration was conducted in a wind tunnel using the micro water droplet and laser beam sheet visualization technique. The main focus of this study was to analyze the effect of the angle of attack and sideslip angle on the vortex interaction and vortex breakdown. These tests were accomplished at angles of attack between $16^{\circ}$ and $28^{\circ}$ and sideslip angle between $0^{\circ}$ and $-15^{\circ}$ at free-stream velocity of 6.2 m/s. Flow visualization data provide a description of the vortex interaction between LEX and wing vortices, and of the vortex breakdown. The introduction of LEX vortex stabilized the vortical flow, and delayed the vortex breakdown up to higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas they are suppressed on the leeward side.

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Asymmetric Vortical Flows on a Slender Body at High Incidence)

  • 노오현;황수정
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.98-111
    • /
    • 1996
  • The compressible laminar and turbulent viscous flows on a slender body in supersonic speed as well as subsonic speed have been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30 and 40 dog, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

주기적 통과 후류가 익형위 박리 유동에 미치는 영향 (Effect of periodic wakes on separated flows over a NACA0012 airfoil)

  • 이희강;박태춘;전우평;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1619-1624
    • /
    • 2004
  • Experimental study of separated flow over a NACA0012 airfoil is conducted at $Re=2{\times}10^5$ when periodic wakes pass over the airfoil. The wakes are periodically generated by circular cylinders upstream of the airfoil. The measurement of surface pressure and surface visualization at various angles of attack are carried out without and with passing wakes. Without passing wakes, a separation bubble at the leading edge of the suction surface is formed at an angle of attack, found from a local plateau in the streamwise pressure distribution and two distinct lines in the surface flow visualization. With passing wakes, however, the bubble disappears. Owing to passing wakes, the lift increases at high angle of attack and the angle of stall also increases.

  • PDF

전익기 형상의 앞전후퇴각 변화에 따른 공력해석 (AERODYNAMIC ANALYSIS ON LEADING-EDGE SWEEPBACK ANGLES OF FLYING-WING CONFIGURATIONS)

  • 이재문;장조원
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.48-55
    • /
    • 2006
  • A computational study was carried out in order to investigate aerodynamic characteristics on leading edge sweepback angles of Flying-Wing configurations. The viscous-compressible Navire-Stokes equation and Spalart-Allmaras turbulence model of the commercial CFD code were adopted for this computation analysis. This investigation examined aerodynamic characteristics of three different types of leading edge sweepback angles: $30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$. The freestream Mach number was M=0.80 and the angle of attack ranged from ${\alpha}=0^{\circ}C\;to\;{\alpha}=20^{\circ}C$. The results show that the increases in sweepback angle of the Flying-Wing configuration creates more efficient aerodynamic performance.

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Flow Around a Slender Body at High Angle of Attack)

  • 노오현;황수정
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.3-10
    • /
    • 1995
  • The compressible laminar and turbulent viscous flow on a slender body in supersonic speed as well as subsonic speed has been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30, 40 deg, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF