• Title/Summary/Keyword: angled

Search Result 298, Processing Time 0.024 seconds

Optimization of target, moderator, and collimator in the accelerator-based boron neutron capture therapy system: A Monte Carlo study

  • Cheon, Bo-Wi;Yoo, Dohyeon;Park, Hyojun;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Hong, Bong Hwan;Chung, Heejun;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1970-1978
    • /
    • 2021
  • The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.

A Basic Study on Efficient Acrylic Plate Light Transmission Road Machining (효율적인 아크릴판 광전송로 가공에 관한 기초 연구)

  • Han, Su-Won;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.95-101
    • /
    • 2022
  • This paper proposes a method to process the shape of an optical transmission road and attempts to determine the most suitable single processing method for an acrylic plate optical transmission road. In addition, by manufacturing an automatic pattern processing device to generate certain shapes on the acrylic plate at regular intervals, and measuring the illuminance of the patterned acrylic plate optical transmission road, the measured illuminance was confirmed to fall under the KS illuminance values presented in Table 1. In conclusion, when an incident light of approximately 20,000 lx is applied, the transmission illumination is approximately 200 lx, which represents a transmission rate of approximately 1% for incident light and corresponds to the KS illumination criterion F. Additionally, the right-angle triangular pyramid base size (A) processed at a temperature of 350 ℃ for one second was 2 mm, exhibiting the largest transmission illumination of 280 lx. When the transparent acrylic plate was set to a constant size of 1.6 mm at the bottom of the right-angle triangular pyramid, the fastest response occurred at a processing tip temperature of 350 ℃ (0.04 s). On the other hand, it took 10 s to process the size of the bottom of the right-angled triangular pyramid at a temperature of 200 ℃ to 1.6 mm, and it was confirmed that the optical transmission efficiency was significantly reduced because of the burr that occurred at this time.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Ultastructural Characteristics of Necrosis and Stunt Disease in Red Pepper by the Mixed Infections of Tobacco mosaic virus or Pepper mild mottle virus and Pepper mottle virus.

  • Kim, Dae. Hyun.;Kim, Jeong. Soo.;Kim, Jae. Hyun.;Eui. Kyoo. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.137.2-138
    • /
    • 2003
  • The commercial cultivars of red pepper were screened against Tobacco mosaic virus (TMV), Pepper mild mottle virus (PMMoV) and Pepper mottle virus (PepMoV) by seedling test. Tn single infection of TMV or PMMoV, mosaic symptom was produced on the cultivars of 'Cheongyang'and 'Wangshilgun'. However, in cultivars of 'Manilla'and 'Bugang', symptoms were not occurred. In single infection of PepMoV, symptoms of mottle and malformation were produced on the tested cultivars of 'Manilla', 'Bugang', 'Cheongyang'and 'Wangshilgun' In the cultivars of 'Cheongyang'and 'Wangshilgun', synergistic symptoms of stunt and lethal death were induced by mixed infections in the two combinations of TMV+PepMoV and PMMoV+PepMoV. However, in cultivars of 'Manilla'and 'Bugang', synergistic symptom was not occurred as mottle which was milder than that of single infection. Cells were single infected with TMV and PMMoV the cultivars of 'Cheongyang'and 'Wangshilgun', respectively, had typical ultrastructures of tobamovirus as the stacked-band structure and multiple spiral aggregate (SA). Ultrastructures of cell and tissues infected with PepMoV on the cultivars of 'Cheongyang', 'Wangshilgun', 'Manilla'and 'Bugang', the potyvirus inclusions of pinwhills, scrolls, lamminated aggregates and amorphous inclusion were observed. Infected cells with a combination of TMV+PepMoV and PMMoV+PepMoV, the virus particles and inclusions of the two different viruses were found only mixed infection in the same cytoplasm and the amounts of viruses in mixed infections were abundant than in single infection. The angled-layer aggregates (ALA) was observed in the cells infected mixedly with TMV and PepMoV

  • PDF

Achieving the Naked-eye 3D Effect for Right-angled LED Screen by Off-line Rendering Production Method

  • Fu Linwei;Zhou Jiani;Tae Soo Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.157-167
    • /
    • 2023
  • As a new trend in the development of urban public spaces, the use of right-angle LED screens perfectly combines building facades with naked-eye 3D visual effects, providing designers with a brand-new creative platform. How to create a realistic naked-eye 3D effect on a right-angle LED screen and bring an immersive visual experience to the audience has become a question worth exploring. So far, production companies have yet to announce the relevant design ideas and complete production methods. In order to explore the production principle and production process of the naked-eye 3D effect of the right-angle LED screen, we summarize the basic production principle of the naked-eye 3D impact of the right-angle LED screen through case analysis. Based on understanding the production principle, the actual case production test was carried out, and a complete production process of the naked eye 3D visual effect of the right-angle led screen was tried to be provided by off-line rendering. For the problem of how to deal with image deformation, we provide two production methods: post-production software correction and UV mapping. Among them, the UV mapping method is more efficient and convenient. Referring to this paper can help designers quickly understand the production principle of the naked eye 3D effect of right-angle LED screens. The production process proposed in this paper can provide a reference for production method for related project producers.

Solar concentrator optimization against wind effect

  • Sayyed Hossein Mostafavi;Amir Torabi;Behzad Ghasemi
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.109-118
    • /
    • 2024
  • A solar concentrator is a reflective surface in the shape of a parabola that collects solar rays in a focal area. This concentrator follows the path of the sun during the day with the help of a tracking system. One of the most important issues in the design and construction of these reflectors is the force exerted by the wind. This force can sometimes disrupt the stability of the concentrator and overturn the entire system. One of the ways to estimate the force is to use the numerical solution of the air flow in three dimensions around the dish. Ansys Fluent simulation software has been used for modeling several angles of attack between 0 and 180 with respect to the horizon. From the comparison of the velocity vector lines on the dish at angles of 90 to - 90 degrees, it was found that the flow lines are more concentrated inside the dish and there is a tendency for the flow to escape around in the radial direction, which indicates the presence of more pressure distribution inside the dish. It was observed that the pressure on the concave surface was higher than the convex one. Then, the effect of adding a hole with various diameter of 200, 300, 400, 500, and 600 mm on the dish was investigated. By increasing the diameter up to the optimized size of 400 mm, a decrease in the maximum pressure value in the pressure distribution was shown inside the dish. This pressure drop decreased the drag coefficient. The effect of the hole on the dish was also investigated for the 30-degree angled dish, and it was found that the results of the 90-degree case should be considered as the basis of the design.

Dose Distribution and Design of Dynamic Wedge Filter for 3D Conformal Radiotherapy (방사선 입체조형치료를 위한 동적쐐기여과판의 고안과 조직내 선량분포 특성)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 1998
  • Wedge shaped isodoses are desired in a number of clinical situations. Hard wedge filters have provided nominal angled isodoses with dosimetric consequences of beam hardening, increased peripheral dosing, nonidealized gradients at deep depths along with the practical consequendes of filter handling and placement problems. Dynamic wedging uses a combination of a moving collimator and changing monitor dose to achieve angled isodoses. The segmented treatment tables(STT) that monitor unit setting by every distance of moving collimator, was induced by numerical formular. The characteristics of dynamic wedge by STT compared with real dosimetry. Methods and Materials : The accelerator CLINAC 2100C/D at Yonsei Cancer Center has two photon energies (6MV and 10MV), currently with dynamic wedge angles of 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$ and 60$^{\circ}$. The segmented treatment tables(STT) that drive the collimator in concert with a changing monitor unit are unique for field sizes ranging from 4.0cm to 20.0cm in 0.5cm steps. Transmission wedge factors were measured for each STT with an standard ion chamber. Isodose profiles, isodose curves, percentage depth dose for dynamic wedge filters were measured with film dosimetry. Dynamic wedge angle by STT was well coincident with film dosimetry. Percent depth doses were found to be closer to open field but more shallow than hard wedge filter. The wedge transmission factor were decreased by increased the wedge angle and more higher than hard wedge filters. Dynamic wedging probided more consistent gradients across the field compared with hard wedge filters. Dynamic wedging has practical and dosimetric advantages over hard filters for rapid setup and keeping from table collisions. Dynamic wedge filters are positive replacement for hard filters and introduction of dynamic conformal radiotherapy and intensity modulation radiotherapy in a future.

  • PDF

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.73-94
    • /
    • 1998
  • In the present study, a method of the three-dimensional limit equilibrium stability analysis of shape of the potential failure wedge for the concave-shaped excavation corner is assumed on the basis of the results of the FLACSU program analysis. Estimation of the three-dimensional seepage forces expected to act on the failure wedge is made by solving the three-dimensional continuity equation of flow with appropriate boundary conditions. By using the proposed method of three-dimensional stability analysis of the concave-shaped excavation corner, a parametric study is performed to examine the reinforcement effect of skew soil nailing system, range of the efficient skew angles and seepage effect on the overall stability. Also examined is the effect of an existence of the right-angled excavation corner on three-dimensional deflection behaviors of the convex-shaped skew soil nailing walls. The results of analyses of the convexshaped excavation corner with skew soil nailing system is further included to illustrate the effects of various design parameters for typical patterns of skew nails reinforcement system.

  • PDF

Comparative study on quality of scanned images from varying materials and surface conditions of standardized model for dental scanner evaluation (치과용 스캐너 평가를 위한 국제표준모델의 재료 및 표면 상태에 따른 스캔 영상 결과물 비교 연구)

  • Park, Ju-Hee;Seol, Jeong-Hwan;Lee, Jun Jae;Lee, Seung-Pyo;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.104-115
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the image acquisition ability of intraoral scanners by analyzing the comprehensiveness of scanned images from standardized model, and to identify problems of the model. Materials and Methods: Cast models and 3D-printed models were prepared according to international standards set by ISO12836 and ANSI/ADA no. 132, which were then scanned by model scanner and two different intraoral scanners (TRIOS3 and CS3500). The image acquisition performance of the scanners was classified into three grades, and the study was repeated with varying surface conditions of the models. Results: Model scanner produced the most accurate images in all models. Meanwhile, CS3500 showed good image reproducibility for angled structures and TRIOS3 showed good image reproducibility for rounded structures. As for model ingredients, improved plaster model best reproduced scan images regardless of the type of scanner used. When limited to 3D-printed model, powdered surface condition resulted in higher image quality. Conclusion: When scanning structures beyond FOV (field of view) in standardized models (following ISO12836 and ANSI/ADA 132), lack of reference points to help distinguish different faces confuses the scanning and matching process, resulting in inaccurate display of images. These results imply the need to develop a new standard model not confined to simple pattern repetition and symmetric structure.