• 제목/요약/키워드: angle-ply laminated plates

검색결과 63건 처리시간 0.019초

다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석 (Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces)

  • 지효선
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도 (Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation)

  • 한성천;윤석호;장석윤
    • 한국강구조학회 논문집
    • /
    • 제10권2호통권35호
    • /
    • pp.201-209
    • /
    • 1998
  • 강섬유보강 적층복합구조물에서 온도의 변화는 구조물의 응답에 중요한 영향을 미칠수 있다. 온도의 급작스런 변화는 재료의 강도와 성질을 현저히 저하시켜 구조물의 대변형, 좌굴, 고응력상태를 유발하는 중요한 인자가 된다. 본 연구에서는 등분포로 재하된 온도하중에 의한 적층복합판의 온도좌굴에 관한 해석을 수행하였다. 전단변형의 효과를 정확히 고려하기위해 5개의 변수로 구성된 고차전단변형이론을 적용하였다. 적층판의 배열각도, 적층판의 수, 폭-두께비의 변화, 형상비의 변화에 따른 임계좌굴온도를 구하여 1차전단변형이론에 의한 결과와 고전적이론에 의한 결과와 비교분석하였다.

  • PDF

Analytical Asymptotic Solutions for Rectangular Laminated Composite Plates

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Jun-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.200-209
    • /
    • 2011
  • An analytical solution for rectangular laminated composite plates was obtained via a formal asymptotic method. From threedimensional static equilibrium equations, the microscopic one-dimensional and macroscopic two-dimensional equations were systematically derived by scaling of the thickness coordinate with respect to the characteristic length of the plate. The onedimensional through-the-thickness analysis was performed by applying a standard finite element method. The derived twodimensional plate equations, which take the form of recursive equations, were solved under sinusoidal loading with simplysupported boundary conditions. To demonstrate the validity and accuracy of the present method, various types of composite plates were studied, such as cross-ply, anti-symmetric angle-ply and sandwich plates. The results obtained were compared to those of the classical laminated plate theory, the first-order shear deformation theory and the three-dimensional elasticity. In the present analysis, the characteristic length of each composite was dependent upon the layup configurations, which affected the convergence rate of the method. The results shown herein are promising that it can serve as an efficient tool for the analysis and design of laminated composite plates.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

저속 충격시 고차이론을 이용한 복합재료 판의 동적 특성 (Dynamic Charateristics of Composite Plates Based On a Higher Order Theory Under Low-Velocity Impact)

  • 심동진;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.42-48
    • /
    • 1997
  • The dynamic response of symmetric cross-ply and angle-ply composite laminated plates under impact loads is investigated using a higher order shear deformation theory. A modified Hertz law is used to predict the impact loads and a four node finite element is used to model the plate. By using a higher order shear deformation theory, the out-of-plane shear stresses, which can be a crucial factor in the failure of composite plates, are determined with significant accuracy. The results compared with previous investigations showed good agreement. The effect of ply sequence and ply angle on the contact force is also studied.

  • PDF

A refined theory with stretching effect for the flexure analysis of laminated composite plates

  • Draiche, Kada;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제11권5호
    • /
    • pp.671-690
    • /
    • 2016
  • This work presents a static flexure analysis of laminated composite plates by utilizing a higher order shear deformation theory in which the stretching effect is incorporated. The axial displacement field utilizes sinusoidal function in terms of thickness coordinate to consider the transverse shear deformation influence. The cosine function in thickness coordinate is employed in transverse displacement to introduce the influence of transverse normal strain. The highlight of the present method is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\neq}0$), the displacement field is constructed with only 5 unknowns, as against 6 or more in other higher order shear and normal deformation theory. Governing equations of the present theory are determined by employing the principle of virtual work. The closed-form solutions of simply supported cross-ply and angle-ply laminated composite plates have been obtained using Navier solution. The numerical results of present method are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT), higher order shear deformation theory (HSDT) of Reddy, higher order shear and normal deformation theory (HSNDT) and exact three dimensional elasticity theory wherever applicable. The results predicted by present theory are in good agreement with those of higher order shear deformation theory and the elasticity theory. It can be concluded that the proposed method is accurate and simple in solving the static bending response of laminated composite plates.

On the free vibration response of laminated composite plates via FEM

  • Sehoul, Mohammed;Benguediab, Soumia;Benguediab, Mohamed;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.149-158
    • /
    • 2021
  • In this research paper, the free vibrational response of laminated composite plates is investigated using a non-polynomial refined shear deformation theory (NP-RSDT). The most interesting feature of this theory is the parabolic distribution of transverse shear deformations while ensuring the conditions of nullity of shear stresses at the free surfaces of the plate without requiring the Shear correction factor "Ks". A fourth-nodded isoparametric element with four degrees of freedom per node is employed for laminated composite plates. The numerical analysis of simply supported square anti-symmetric cross-ply and angle-ply laminated plate is carried out using a special discretization based on four-node finite element method which four degrees of freedom per node. Several numerical results are presented to show the effect of the coupling parameters of the plate such as the modulus ratios, the thickness ratio and the plate layers number on adimensional eigen frequencies. All numerical results presented using the current finite element method (FEM) is presented in 3D curve form.

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.

Influence of temperature on the beams behavior strengthened by bonded composite plates

  • Bouazza, Mokhtar;Antar, Kamel;Amara, Khaled;Benyoucef, Samir;Bedia, El Abbes Adda
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.555-566
    • /
    • 2019
  • The purpose of this paper is to investigate the thermal effects on the behaviour reinforced-concrete beams strengthened by bonded angle-ply laminated composites laminates plate $[{\pm}{\theta}n/90m]_S$. Effects of number of $90^{\circ}$ layers and number of ${\pm}{\theta}$ layers on the distributions of interfacial stress in concrete beams reinforced with composite plates have also been studied. The present results represent a simple theoretical model to estimate shear and normal stresses. The effects the temperature, mechanical properties of the fibre orientation angle of the outer layers, the number of cross-ply layers, plate length of the strengthened beam region and adhesive layer thickness on the interfacial shear and normal stresses are investigated and discussed.