• Title/Summary/Keyword: angiogenesis inhibition

Search Result 159, Processing Time 0.025 seconds

High Throughput Screening on Angiogenesis Inhibitor and Promoter of Medicinal Plants using a Protein Microarray Chip

  • In, Dong-Su;Lee, Min-Su;Bang, Kyong-Hwan;Kim, Ok-Tae;Hyun, Dong-Yun;Ahn, Young-Sup;Cha, Seon-Woo;Seong, Nak-Sul;Kim, Eung-Youn;Shin, Yoo-Soo;Kang, In-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 2007
  • The effects of angiogenesis inhibitor from the extract libraries of Korean and Chinese medicinal plants were investigated using a protein microarray chip. Protein chip was constructed by immobilization of integrin ${\alpha}_5{\beta}_1$ on protein chip base plates and employed far screening active extracts that inhibit the integrin-fibronectin interaction from the extract libraries. The 100 extracts of medicinal plants were obtained from extract bank of National Institute of Crop Science, RDA. The 14 extracts among 100 extract libraries were shown efficient inhibition activity for the interaction between integrin-fibronectin. The medicinal plants of 14 extracts were Vitex negundo var. incisa (Lam.) C.B. Clarke, Epimedium koreanum Nakai, Cedrela sinensis A. Juss, Ipomea aquatica Forsk, Schisandra chinensis Baill, Pulsatilla koreana Nakai, Paeonia lactiflora Pall. var.hortensis Makino, Oenothera odorata, Allium chinense, Allium victorialis var. platyphyllum MAKINO, Polygonatum odoratum Druce var. pluriflorum Ohwi, Hosta lancifolia, Agrimonia pilosa L. var. japonica Nakai and Potentilla chinensis SER. The Paeonia lactiflora, Oenothera, and Agrimonia pilosa from these 14 extracts libraries were shown strong inhibition activity of integrin ${\alpha}_5{\beta}_1$.

ANTI-TUMOR EFFECTS OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITOR ON ORAL SQUAMOUS CELL CARCINOMA CELL LINES (혈관내피세포성장인자 억제제에 의한 구강편평상피세포암종 세포주의 성장 억제 효과)

  • Han, Se-Jin;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.66-73
    • /
    • 2009
  • Tumor angiogenesis is a process leading to formation of blood vessels within tumors and is crucial for maintaining a supply of oxygen and nutrients to support tumor growth and metastasis. Vascular endothelial growth factor(VEGF) plays a key role in tumor angiogenesis including induction of endothelial cell proliferation, migration, survival and capillary tube formation. VEGF binds to two distinct receptors on endothelial cells. VEGFR-2 is considered to be the dominant signaling receptor for endothelial cell permeability, proliferation, and differentiation. Bevacizumab(Avastin, Genetech, USA) is a monoclonal antibody against vascular endothelial growth factor. It is used in the treatment of cancer, where it inhibits tumor growth by blocking the formation of new blood vessels. The goal of this study is to identify the anti-tumor effect of Bevacizumab(Avastin) for oral squamous cell carcinoma cell lines. Human squamous cell carcinoma cell line(HN4) was used in this study. We examined the sensitivity of HN4 cell line to Bevacizumab(Avastin) by using in vitro proliferation assays. The results were as follows. 1. In the result of MTT assay according to concentration of Bevacizumab(Avastin), antiproliferative effect for oral squamous cell carcinoma cell lines was observed. 2. The growth curve of cell line showed the gradual growth inhibition of oral squamous cell carcinoma cell lines after exposure of Bevacizumab(Avastin). 3. In the apoptotic index, groups inoculated Bevacizumab(Avastin) were higher than control groups. 4. In condition of serum starvation, VEGFR-2 did not show any detectable autophosphorylation, whereas the addition of VEGF activated the receptor. Suppression of phosphorylated VEGFR-2 and phosphorylated MAPK was observed following treatment with Bevacizumab(Avastin) in a dose-dependent manner. 5. In TEM view, dispersed nuclear membrane, scattered many cytoplasmic vacuoles and localized chromosomal margination after Bevacizumab(Avastin) treatment were observed. These findings suggest that Bevacizumab(Avastin) has the potential to inhibit MAPK pathway in proliferation of oral squamous cell carcinoma cell lines via inhibition of VEGF-dependent tumor growth.

Low-dose metronomic doxorubicin inhibits mobilization and differentiation of endothelial progenitor cells through REDD1-mediated VEGFR-2 downregulation

  • Park, Minsik;Kim, Ji Yoon;Kim, Joohwan;Lee, Jeong-Hyung;Kwon, Young-Guen;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.470-475
    • /
    • 2021
  • Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression.

CORRELATION BETWEEN VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION AND MALIGNANCY GRADING IN BIOPSY SPECIMENS OF TONGUE CANCERS (설암의 술전 조직표본에서 악성도와 혈관내피세포성장인자 발현과의 상관관계)

  • Byun, June-Ho;Park, Bong-Wook;Chung, In-Kyo;Kim, Jong-Ryoul;Kim, Uk-Kyu;Park, Bong-Soo;Kim, Gyoo-Cheon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.6
    • /
    • pp.528-534
    • /
    • 2005
  • Angiogenesis is important for the growth and metastasis of solid tumors. Some growth factors, inflammatory cytokines, and angiogenin are known to promote tumor angiogenesis. Among them, Vascular endothelial growth factor (VEGF) is the most intriguing factor in regard to tumor angiogenesis. Inhibition of VEGF activity by neutralizing antibodies or by the introduction of dominant negative VEGF receptors into endothelial cells of tumor-associated blood vessels resulted in the inhibition of tumor growth and in tumor regression, indicating that VEGF is a major initiator of tumor angiogenesis. VEGF promotes angiogenesis through their receptors, Flt-1 and Flk-1/KDR. on vascular endothelial cells. These two receptors were usually believed to be expressed specifically on vascular endothelial cell. Several reports have now shown that VEGF is not only significantly associated with microvessel density but also has prognostic value in both node-negative and node-positive oral squamous cell carcinoma. For many years several histologic features of the neoplasms are being considered when assessing the influence of malignancy grading on recurrence and prognosis. Among the characteristics investigated, degree of keratinization, nuclear pleomorphism, mode of invasion, microscopic depth of invasion, intravascular invasion, lymphocyte infiltration, and number of mitoses have been considered as important prognostic factors. So, this study was conducted to evaluate the correlation of vascular endothelial growth factor expression with malignancy in paraffin-embedded biopsy specimens from 11 patients with tongue cancers. Our results showed that high immunoreactivity specimens of VEGF expression were significantly lower keratinization degree and more pronounced nuclear pleomorphism than in low immunoreactivity specimens. Thus, VEGF expression could be used as a prognostic marker in tongue cancer.

Anti-Angiogenic Activity of Acalycixenolide E, a Novel Marine Natural Product from Acallycigorgia inermis

  • Kwon, Ho-Jeong;Kim, Jin-Hee;Jung, Hye-Jin;Kwon, Yong-Guen;Kim, Min-Young;Rho, Jung-Rae;Shin, Jong-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.656-662
    • /
    • 2001
  • Angiogenesis is known as a crucial process in the growth and spreading of tumor cells. Accordingly, the effective inhibition of this process would appear to be a promising way to cure angiogenesis-related diseases, including cancer. This study demonstrates that acalycixenolide E (AX-E) from the marine organism Acalycigorgia inermis exhibits a potent anti-angiogenic activity both in vitro and in vivo. AX-E inhibits the bFGF-induced proliferation of HUVECs in a dose dependent manner, along with the bFGF-induced migration, invasion, and tube formation of HUVECs. Moreover, AX-E potently inhibits the in vivo neovascularization of the chorioallantoic membranes (CAMs) of growing chick embryos. interestingly, AX-E suppresses the expression of metalloproteases 2 and 9, yet shows no effect on their activities. The novel chemical structure and potent anti-angiogenic activity of AX-E will be of great value in elucidating the molecular mechanism of angiogenesis as well as in the development of a novel anti-angiogenic drug.

  • PDF

The effect of baicalin in a mouse model of retinopathy of prematurity

  • Jo, Hyoung;Jung, Sang Hoon;Yim, Hye Bin;Lee, Sung Jin;Kang, Kui Dong
    • BMB Reports
    • /
    • v.48 no.5
    • /
    • pp.271-276
    • /
    • 2015
  • Baicalin is a flavonoid derived from the dried root of Scutellaria baicalensis. In this study, oxygen-induced retinopathy was used to characterize the anti-angiogenic properties of baicalin in mice. Pups were exposed to a hyperbaric oxygen environment to induce retinal angiogenesis and were subjected to intraperitoneal injection of baicalin. Avascular area, neovascular tufts, and neovascular lumens were quantified from digital images. Compared to the vehicle, baicalin clearly reduced the central avascular zone and the number of neovascular tufts and lumens. High-dose baicalin (10 mg/kg) significantly reduced the expression of matrix metalloproteinase-2 (MMP-2), MMP-9, angiotensin II, and vascular endothelial growth factor (VEGF). These results show that baicalin is a powerful antiangiogenic compound that attenuates new vessel formation in the retina after systemic administration, and is a candidate substance for therapeutic inhibition of retinal angiogenesis. [BMB Reports 2015; 48(5): 271-276]

Roles of Matrix Metalloproteinases in Tumor Metastasis and Angiogenesis

  • Yoon, Sang-Oh;Park, Soo-Jin;Yun, Chang-Hyun;Chung, An-Sik
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.128-137
    • /
    • 2003
  • Matrix metalloproteinases (MMPs), zinc dependent proteolytic enzymes, cleave extracellular matrix (ECM: collagen, laminin, firbronectin, etc) as well as non-matrix substrates (growth factors, cell surface receptors, etc). The deregulation of MMPs is involved in many diseases, such as tumor metastasis, rheumatoid arthritis, and periodontal disease. Metastasis is the major cause of death among cancer patients. In this review, we will focus on the roles of MMPs in tumor metastasis. The process of metastasis involves a cascade of linked, sequential steps that involve multiple host-tumor interactions. Specifically, MMPs are involved in many steps of tumor metastasis. These include tumor invasion, migration, host immune escape, extravasation, angiogenesis, and tumor growth. Therefore, without MMPs, the tumor cell cannot perform successful metastasis. The activities of MMPs are tightly regulated at the gene transcription levels, zymogen activation by proteolysis, and inhibition of active forms by endogenous inhibitors, tissue inhibitor of metalloproteinase (TIMP), and RECK. The detailed regulations of MMPs are described in this review.

Apicularen A, a Macrolide from Chondromyces sp., Inhibits Growth Factor Induced In Vitro Angiogenesis

  • Kwon, Ho-Jeong;Kim, Dong-Hoon;Shim, Joong-Sub;Ahn, Jong-Woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.702-705
    • /
    • 2002
  • Apicularen A (Api A) was recently isolated from Chondromyces sp. as a potent antitumor agent. Because of its unique chemical structure, a macrolide with a highly unsaturated amide side chain, and potent growth inhibitory effect in various cancer cell lines, Api A is currently in clinical trial for cancer therapy. In the present study, the effect of Api A on in vitro angiogenesis of bovine aortic endothelial cells (BAECS) was investigated. Api A potently inhibited the proliferation of BAECS in a dose-dependent manner. Treatment of the endothelial cells with up to 10 ng/ml of the compound did not show any cytotoxicity. In addition, it inhibited basic fibroblast growth factor (bFGF)-induced invasion and capillary tube formation of BAECS at concentrations of 2-5 ng/ml. These results, therefore, demonstrate that Apl A is a novel antiangiogenic agent and may suppress the growth of tumors, at least in part, by the inhibition of neovascularization.

Shikonin Induced Apoptosis and Inhibited Angiogenesis on HSE Cells

  • Lee Soo-Jin;Kim Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1363-1369
    • /
    • 2005
  • Previously we have shown that shikonin has strong anti-tumor activities via inducing apoptosis and suppressing metastasis on LLC cells in vivo and in vitro. Here we have investigated anti-angiogenic potential of shikonin and its possible mechanism of action in HSE cells. Shikonin inhibited the proliferation of HSE cells in a concentration-dependent manner. It was shown that this proliferation inhibition was caused by apoptosis induced by shikonin via BrdU incorporation and Western blotting analysis. Shikonin treatment was caused that decrease of activation of caspases and cleavage of PARP. And shikonin induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Moreover, shikonin showed anti-angiogenic activities inhibiting tube-like formation of HSE cells in vitro and vascular formation of LLC cells in vivo. These findings suggest that shikonin may a possible candidate not only anti-metastatic agent but also anti-angiogenic agent.

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.