• Title/Summary/Keyword: anemometry

Search Result 103, Processing Time 0.028 seconds

Measurement of Spray Characteristic Parameters for Inquiry into Small LRE-Injector's Injection Performance (소형 액체로켓엔진 인젝터의 분사성능 고찰을 위한 분무특성 매개변수 측정)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong;Choi, Jong-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.141-144
    • /
    • 2009
  • An injector plays an important role in the process of an efficient combustion in liquid-rocket engines (LRE). This paper is focused on the injection performance of a small LRE-injector by employing the spray characteristic parameters made up of the velocity, Sauter mean diameter, and turbulence intensity. An experimental investigation is carried out with the aid of a dual-mode phase Doppler anemometry (DPDA) according to the injection pressure variation and along transverse axis, spatially. The Weber number and Reynolds number are used to characterize the atomization and turbulence nature of injector spray.

  • PDF

Flow Characteristics of Axi-symmetric Swirl Jet in the Initial Regions (축대칭 회전분사류의 초기 유동특성)

  • Han, Yong-Un;An, Yeong-Hui;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.531-538
    • /
    • 2002
  • Flow characteristics of a round jet with swirl number of 0.17 have been investigated using a hot -wire anemometry in the initial region within 10D(exit diameter). Swirl effects were observed by comparing centerline flow characteristics, similarities and turbulent budgets of a swirl jet and a free jet, respectively. To obtain similarity of the radial profiles mean velocity and higher moments were measured at the vertical pl anes, located at 2.5, 5.0, 7.5D, 10D, respectively. The centerline velocity characteristics were also measured. It is turned out that similarities of mean and Reynolds stress are established. The jet boundary has wider width than that of a free jet and the shear stress also becomes stronger. In addition the centerline decay becomes faster than that of the free jet, indicating that the swirl induces more entrainment in the initial region of the swirl Jet by transferring the axial mean kinetic energy into the swirl energy and, therefore, has wider boundary, compared with that of free jet.

Turbulent Flow Field Structure of Initially Asymmetric Jets

  • Kim, Kyung-Hoon;Kim, Bong-Whan;Kim, Suk-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1386-1395
    • /
    • 2000
  • The mear field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemometry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. There pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the upstream of the pipe exit, secondary flow through the bend mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameter-long straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases.

  • PDF

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Vorticity Analysis Associated with Drafting Cylinders for Pneumatic Spinning

  • Bergada J.M.;Valencia E.;Coll Ll
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.146-157
    • /
    • 2006
  • Traditional spinning systems have reached profitability limits in developed countries due to high production costs and low system productivity. Pneumatic spinning is seen as a developing system, because productivity is much higher than conventional systems. This study evaluates one of the main problems to increase productivity in pneumatic spinning, where air mass-flow is dragged by the drafting cylinders. This flow interacts with the incoming fibres deviating them from their expected path. Via laser anemometry, airflow velocity distribution around drafting cylinders has been measured and it has been found that vorticity is created at the cylinder's inlet. Extensive CFD simulation on the air flow dragged by the cylinders has given a clear insight into the vortex created, producing valuable information on how cylinder design affects the vorticity created. Several drafting cylinder designs have been tested without giving any improvement in productivity. However, the use of a drafting cylinder with holes in it produced good results to the problem of air currents, strongly reducing them and therefore allowing a sharp increase in yarn quality, as well as an increase in productivity. An extensive study on vortex kinematics has been undertaken, bringing with it a better understanding of vortex creation, development and breakdown.

Spray Breakup Characteristics of LRE Injector (액체로젯엔진 인젝터의 분무 분열특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.157-160
    • /
    • 2007
  • Spray characteristics of an injector employed in liquid rocket engine is investigated by Particle Image Velocimetry and Dual-mode Phase Doppler Anemometry measurements. Instantaneous plane images captured by PIV technique are examined in order to judge a pass-fail criteria of spray injection performance. DPDA technique is also applied in order to measure the velocity and diameter of spray droplets. The eternal objective of this study is to evaluate an injector performance which may be utilized for the design of brand-new ones through the clear understanding of spray characteristics.

  • PDF

Study on centerline turbulent structures of circular contraction and expansion ducts (수축부와 확대부의 중심 유동에서 나타나는 대칭적 난류구조에 관한 연구)

  • Han,Yong-Un;Lee, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.221-228
    • /
    • 1998
  • In order to look into the comparative flow characteristics between a circular contraction duct and a circular expansion duct the both centerline turbulent structures have been investigated by the hot wire anemometry. Both of the contraction and the expansion have Morel type contours. Means, turbulences, and triple moments have been measured for the turbulent kinetic energy budgets along their centerlines. It is resulted that mean velocities of both have much deviated from theoretical values calculated by one-dimensional continuity considerations, and that for the same upstream condition, the expansion maintains the isotropy in general while the contraction maintains a severe anisotropy through the whole duct. The mean transport of the TKE along the expansion is willing to balance mostly with the dissipation in the TKE budgets while that along the contraction is balanced with the production in the turbulent kinetic energy equation.

Local Flow Speed Measurement Using Tunable AC Thermal Anemometry

  • Chung Won Seok;Kwon Ohmyoung;Lee Joon Sik;Choi Young Ki;Park Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1449-1459
    • /
    • 2005
  • This paper shows the results of local flow speed measurement using tunable AC thermal anemometry, which is suitable for the accurate measurement of wide range flow speed. The measurement accuracy is verified through the comparison between the measurement data and the analytic solution of the sensor temperature oscillation in stationary fluid. The relation between the phase lag and the flow speed is experimentally investigated at various conditions. The measurement sensitivity for low flow speed improves in a low frequency region and that for high flow speed improves in a high frequency region. Also, the sensitivity increases with decreasing thermal conductivity of the surrounding fluid. The local flow speed could be measured as low as 1.5 mm/s and the highest measurement resolution was 0.05 mm/s in the range of 4.5 $\~$5.0 mm/s at 1 Hz in this experiment.

Disintegration and Spreading Behavior of the Spray emanating from a Liquid-thruster Injector (액체추력기 인젝터로부터 발생하는 분무의 분열 및 확산 거동)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • Pseudo-3D Spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio $(L/d_o)$ of 1.67 and at the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray.

  • PDF

Experimental characterization of the lateral and near-wake flow for the BARC configuration

  • Pasqualetto, Elena;Lunghi, Gianmarco;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • We experimentally investigate the high-Reynolds flow around a rectangular cylinder of aspect ratio 5:1. This configuration is the object of the international BARC benchmark. Wind tunnel tests have been carried out for the flow at zero angle of attack and a Reynolds number, based on the crossflow cylinder length and on the freestream velocity, equal, to 40 000. Velocity measurements are obtained by using hot-wire anemometry along 50 different cross-flow traverses on the cylinder side and in the near wake. Differential pressure measurements are acquired on multiple streamwise sections of the model. The obtained measurements are in a good agreement with the state-of-the-art experiments. For the first time among the several contributions to the BARC benchmark, detailed flow measurements are acquired in the region near the cylinder side and in the near-wake flow. The edges and the thickness of the shear layers detaching from the upstream edges are derived from velocity measurements. Furthermore, we compute the flow frequencies characterizing the roll-up of the shear layers, the evolution of vortical structures near the cylinder side and the vortex shedding in the wake.