• 제목/요약/키워드: and vector magnetic property

검색결과 9건 처리시간 0.024초

Availability of 2-Dimensional Vector Magnetic Property for High Flux Density Machines

  • Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권1호
    • /
    • pp.1-5
    • /
    • 2005
  • The vector magnetic property is defined as the relationship between the magnetic field strength vector H and the magnetic flux density vector B. It is very important for the development of high efficiency and the high-density electric machines. The electrical steel sheet for the machine core shows the remarkable vector behavior by the high magnetic flux density level. In this paper, the magnetic characteristic analysis using E&S2 model is introduced as the useful technology for the design and development.

A Measurement System for Two-Dimensional DC-Biased Magnetic Property

  • Enokizono, Masato;Takahashi, Syuichi;Ikariga, Atsushi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.143-148
    • /
    • 2002
  • Up to now, DC-biased magnetic properties have been measured in one dimension (scalar). However, scalar magnetic properties are insufficient to clarify DC-biased magnetic properties because scalar magnetic properties can only impossibly consider the phase difference between the magnetic flux density B vector and the magnetic field strength H vector. Thus the magnetic field strength H and magnetic flux density B in magnetic materials must be directly measured as a vector quantity (two-dimensional). This paper presents measurement system to clarify the two-dimensional DC-biased magnetic properties.

New Magnetic Field Analysis Considering a Vector Magnetic Characteristic

  • Shimoji, Hiroyasu;Enokizono, Masato;Todaka, Takashi;Horibe, Toyomi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권4호
    • /
    • pp.149-155
    • /
    • 2002
  • This paper presents magnetic field analysis technology that uses a vector magnetic characteristic. Recently the magnetic material was found to be measurable using the vector quantity technique. Therefore considering the anisotropy of the magnetic material in the vector field analysis is necessary. The magnetic field analysis method, which is considered the anisotropy by combining the finite element method with the E&$S^2$ (Enokizono, Soda, and Shimoji) modeling, is applied to a permanent magnet motor model.

고속철도의 가선전류에 의한 고속열차내의 자기장 유도에 대한 연구 (Investigations on the Induced Magnetic Fields in High Speed Train due to the Current in the High Speed Railroad Catenary Wire)

  • 한인수;이태형;박춘수;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 2010
  • In recent society, the electricity is so essential for the human lives. Lots of modern people take many cultural benefits owing to the development of the power systems, the cell phone, the electrical appliances, and etc. However, the problems related to the electromagnetic field generate as the side effects. Examples are the fault in the electric machinery due to the electromagnetic coupling, the fault in the communication devices due to the electromagnetic field around the power line equipments, and the effect upon the human beings due to the electromagnetic field, and etc. In this paper, we induce the vector equation about the magnetic field based on Biot-Savart law. We calculate the magnetic field at the surface of the high speed train with this induced equation and the current in the high speed railroad catenary wire. Finally, we calculate the magnetic field in the high speed train considering the material property like the permeability, the conductivity, and so on.

  • PDF

Examination of Two-Dimensional Magnetic Properties in a 5-Leg-Different- Volume- V-Connection- Transformer Core

  • Urata Shinya;Shimoji Hiroyasu;Todaka Takashi;Enokizono Masato
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.243-247
    • /
    • 2005
  • The Different-volume- V-connection transformer is known as an electric power source that can supply 3-phase electric power and single-phase electric power at the same time. Usually, we use two single-phase transformers that have different volumes. In this paper, we propose the use of a 3-phase 5-leg transformer with the different-volume- V-connection. And, we examine the magnetic properties of the 5-leg core model with the different-volume- V-connection. The magnetic properties of cores with the different-volume- V-connection are compared with those with the delta-connection. In order to express the magnetic anisotropy of the core materials and to calculate the iron loss directly, the two-dimensional vector magnetic property is considered with the E&SS modeling in the simulation.

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.

ECR 용 최적 마그네트에 관한 연구 (A Study on the Optimal Magnet for ECR)

  • 김윤택;김용주;김교순;이용직;손명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Core Material Design of a High Performance Rotating Machine Considering Magnetic Anisotropy

  • Ikariga Atsushi;Enokizono Masato;Shimoji Hiroyasu;Yamashiro Hirofumi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.248-252
    • /
    • 2005
  • This paper deals with a new design method for a small-size rotating machine with high power. In order to achieve high performance, secondary excitation by Nd-Fe-B magnets and the grain oriented electrical steel sheets were selected and a new design using dual rotors is proposed. The outline of the high-performance rotating machine will be presented and the results of the finite element analysis by using this method combined with the E&SS modeling will be shown in the paper.

Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study

  • Kwon, Mun-Young;Seo, Yeo-Jin;Lee, Yeon-Mi;Lee, Ae-Ree;Lee, Joon-Hwa
    • 한국자기공명학회논문지
    • /
    • 제19권2호
    • /
    • pp.95-98
    • /
    • 2015
  • Reverse gyrase is a hyperthermophile specific protein which introduces positive supercoils into DNA molecules. Reverse gyrase consists of an N-terminal helicase-like domain and a C-terminal topoisomerase domain. The helicase-like domain shares the three-dimensional structure with two tandem RecA-folds (H1 and H2), in which the subdomain H2 is interrupted by the latch domain (H3). To understand the physical property of the hyperthermophile-specific protein, two subdomains af_H1 and af_H23 have been cloned into E. coli expression vector, pET28a. The $^{15}N$-labeled af_H1 and af_H23 proteins were expressed and purified for heteronuclear NMR study. The af_H1 protein exhibits the well-dispersion of amide signals in its $^1H/^{15}N$-HSQC spectra and thus further NMR study continues to be progressed.