• Title/Summary/Keyword: and system dynamics

Search Result 5,374, Processing Time 0.039 seconds

Dynamics of Facial Subcutaneous Blood Flow Recovery in Post-stress Period

  • Sohn, Jin-Hun;Estate M. Sokhadze;Lee, Kyung-Hwa;Lee, Jong-Mi;Park, Mi-Kyung;Park, Ji-Yeon
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.62-68
    • /
    • 2000
  • The aim of the study was to compare effects of music and white noise on the recovery of facial blood flow parameters after stressful visual stimulation. Twenty-nine subjects participated in the experiment. Three visual stimulation sessions with aversive slides (the IAPS, disgust category) were followed by subjectively "pleasant" (in the first session), "sad" music (in the second ), and white noise (in the third ). Order of sessions was counterbalanced. Blood flow parameters (peak blood flow, blood flow velocity, blood volume) were recorded by Laser Doppler single-crystal system (LASERFLO BPM 403A) interfaced through BIOPAC 100WS with AcqKnowledge software (v.3.5) and analyzed in off-line mode. Aversive visual stimulation itself decreased blood flow and velocity in all 3 sessions. Both "pleasant" and "sad" music led to the restoration of baseline levels in all blood flow parameters, while noise did not enhance recovery process. Music on post-stress recovery had significant change in peak blood flow and blood flow velocity, but not in blood volume measures. Pleasant music had bigger effects on post-stress recovery in peak blood flow and flow velocity than white noise. It reveals that music exerted positive modulatory effects on facial vascular activity measures during recovery from negative emotional state elicited by stressful slides. Results partially support the undoing hypothesis of Levenson (1994), which states that positive emotions may facilitate process of recovery from negative emotions.

  • PDF

Modeling of Hot-Coil/Cassette Dynamics and Design of Cassette Wedge Angle (핫코일-카세트 동역학 모델링 및 지지경사각 설계)

  • Hong, Sup;Hong, S.W.;Hong, S.Y.;Kim, H.J.;Kim, J.H.;Park, Y.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.70-75
    • /
    • 1997
  • This paper concerns with a safe and efficient transportation method of hot-coils on cargo ship. An automatic loading and unloading system of hot-coils by cassettes, which secure the geometrically unstable cargo, hot-coil, by supporting with wedges on both sides, is considered efficient and profitable. Safety of hot-coil on cassette and subsequently safety of total cargo ship are directly affected by the wedge angle of cassette. For optimal design of the cassette wedge angle, a dynamic model of hot-coil/cassette cargo is developed with constraint of no relative motions between the coil and the cassette. Force equilibrium conditions between resultant alternating inertia forces on hot-coil due to motions of cargo ship in waves and reactions forces from cassette wedge surfaces are derived and consequently a numerical simulation code is implemented. Cassette wedge angle of 37 degree is taken as optimal by considering dynamic stability of hot-coil and strength of cassette structure. Performance of the designed cassette wedge angle is investigated by scaled bench test.

  • PDF

Performance Improvement of Cylindrical Turbine Guide Bearings with Pad Leading-Edge Tapers for Vertical Hydro-Power Application: Effects of Taper Angle and Length (패드 선단 테이퍼를 갖는 수력 수직 원통형 터빈 가이드 베어링의 성능향상 - 테이퍼 각도와 길이의 영향)

  • Lee, An Sung;Jang, Sun-Yong;Park, Soo Man
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Cylindrical turbine guide bearings (TGBs) with simple plain pads have conventionally been used in vertical hydro-power turbine-generator applications in order to provide turbine runner shafts with smooth rotation guides and supports. To overcome low-load/low-eccentricity performance drawbacks, such as very low film stiffness and lack of design credibility in the stiffness values themselves, of conventional cylindrical TGBs, the introduction of a rotational-directional leading-edge taper to each partitioned pad, simply pad leading-edge taper, has been found to be very effective in enhancing their design-application availability and usefulness. In this study, we investigate the effects of taper angle and length for given taper heights in detail in order to systematically establish the effectiveness of design on the performance improvement of vertical hydro-power application cylindrical TGBs with pad leading-edge tapers. The analysis results with $4-Pad{\times}1-Row$ cylindrical TGBs show that the lubrication performance of the cylindrical TGBs is optimized with an approximate taper angle ratio of 0.8 and taper length ratio of 0.9. We conclude that the introduction of pad leading-edge tapers along with the optimization of taper designs can be very effective in improving the overall operation reliability of cylindrical TGBs and the rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems as well, to which the TGBs are applied.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Tension Control of a Winding Machine using Time-delay Estimation (시간 지연 추정 기법을 이용한 권취기의 장력 제어 알고리즘)

  • Heo, Jeong-Heon;You, Byungyong;Kim, Jinwook
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • We propose a tension controller based on a time-delay estimation (TDE) technique for a winding machine. Firstly, we perform the necessary calculations to derive a mathematical model of the winding machine. In this sense, it is revealed that the roll radius of the winding machine is characteristically seen to be increasing or decreasing during the winding process. That being said, it is noted that the parameters of the winding machine are coupled and constantly changing during this process. Understandably then, it is noted that the model is shown to be nonlinear and time-varying. Secondly, we propose the way to apply the TDE based controller which is the so-called Time-delay Control (TDC). The TDC utilizes the time-delayed information intentionally to compensate the nonlinear and time-varying characteristics. As we have seen, the proposed controller consists of two parts: one is a TDE component, and the other is an error dynamics component which is defined by a user. In a computer simulation based on the Matlab/Simulink program, the proposed controller is compared with a conventional PID controller, which is widely used in the tension control of the winding machine. The proposed controller reduces the incidence of overshoot and steady-state error in the tension control, as compared to the conventional PID controller.

Dynamic Analysis on the Host regional Effects of before and after Mega-Events (메가 이벤트 개최 전후 개최지역에 미치는 효과에 관한 동태적 분석)

  • Park, Bok-Jae;Moon, Young-Soo
    • International Commerce and Information Review
    • /
    • v.17 no.1
    • /
    • pp.289-307
    • /
    • 2015
  • This study was to analyze dynamics of host regional effect in accordance with Mega-events. Yeosu Expo, 2012 was the Mega-event, and dynamic changes in economic indicators such as number of tourists, GRDP, employment rate, and real estate price were analyzed before and after the event. The Mega-event affected positively and increased on the number of tourists. While GRDP affected positively only right before the event, and the employment rate was not significantly affected by the event. The real estate price was increased from the announced time of hosting to the event held, but later decreased. This study suggested the comprehensive method for analyzing the effect of Mega-event and there was a cyclical causality among the result variables.

  • PDF

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor ($CO_2$ 2단 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots (이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.503-509
    • /
    • 2014
  • In this paper, a PID controller with adaptive neural network compensator is proposed to control the formations of mobile robot. The control system is composed of a kinematic controller based on the leader-following robot and dynamic controller for considering the dynamics of the mobile robot. The dynamic controller is constituted by a PID controller and the adaptive neural network compensator for improving the performance and compensating the change in dynamic characteristics. Simulation results show the performance of the PID controller and the neural network compensator for the circular trajectory and linear trajectory. And it is verified that by improving the performance of a PID controller via the adaptive neural network compensator, the following robot's tracking performance is improved.