• Title/Summary/Keyword: and resonance

Search Result 10,515, Processing Time 0.032 seconds

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Pak, Chul-Hui;Cho, Chong-Du;Cho, Ki-Cheol;Kim, Myoung-Gu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

A Study on Analysis of Moored Ship Motion Considering Harbor Resonance (항만공진현상을 고려한 계류선박의 동요 해석에 관한 연구)

  • Kwak, Moon Su;Moon, Yong Ho;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.595-608
    • /
    • 2013
  • This paper is proposed the computation method of moored ship motion considering harbor resonance, and estimated that the harbor resonance have an effect on moored ship motion. The computation of harbor resonance was used CGWAVE model and the computation of moored sip motion was used the Green function method expressed by three dimensions. This method was verified with the field observation data of moored ship motion, and the application of actual harbor was investigated with wave field data and down time record data in Pohang New Harbor. The resonance periods in Pohang New Harbor that obtained from wave field data were 80, 33, 23, 8 minute, which are the long waves, and 42, 54, 60 second, which are the infra-gravity waves inside harbor slip. The simulated results of harbor resonance were corresponded with the wave field data. This study was investigated on 5,000 ton, 10,000 ton and 30,000 ton ship sized in Pier 8 of Pohang New Harbor that the harbor resonance has effect on moored ship motion from simulated results of ship motion in case of included resonance and excluded resonance. In case of included resonance, the ship motion have increased by 12~400 percent when compared with results of excluded resonance. We could find that the harbor resonance have still more an effect on the surge and heave motions of a large size ship and the roll and yaw motions of a small size ship.

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.43-43
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Contrast-Enhanced Cine Magnetic Resonance Imaging in Myocardial Infarction

  • 최병욱;최규옥;김영진;정남식;최동훈
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.89-90
    • /
    • 2003
  • Viable myocardium can be distinguished from the infarcted myocardium by contrast-enhanced magnetic resonance imaging (ceMRI). In this study, contrast-enhancement with cine magnetic resonance imaging (cecineMRI) was performed for direct correlation of transmural extent of hyperenhancement and that of contractility.

  • PDF

Electron Spin Resonance and Electron Nuclear Double Resonance Studies on the Photoinduced Charge Separation of N-Methylphenothiazine in Phenyltriethoxysilane, Vinyltriethoxysilane and Methyltriethoxysilane Gel Matrices

  • Kang, Young-Soo;Park, Chan-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.91-102
    • /
    • 2000
  • The photoproduced cation radical of N-methylphenothiazine doped in the different kind of matrices of phenyltriethoxysilane (PhiTEOS), vinyltriethoxysilane (VTEOS), and methyloiethoxysilane (METOS) was comparatively studied with electron spin resonance (ESR) and electron nuclear double resonance (ENDOR). The photoinduced charge separation efficiency was determined by integration of ESR spectra which correspond to the amount of photoproduced cation radical in the matrices. This was correlatively studied with the polarity and pore size of the gel matrices. The polarity of the matrices was comparatively determined by measuring λ$\sub$max/ values of PC$_1$ in the different matrices. The relative pore size among the matrices was determined by measuring relative proton matrix ENDOR line widths of the photoproduced cation radical of PCI. The decay kinetic constants of the cation radical of PCI in the different matrices was relatively studied with fitting the biexponential decay curves after exposure into the ambient condition. This is correlatively interpreted with the polarity and pore size of the matrices.

  • PDF

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

The Study of Reduction Technologies of Tire Cavity Resonance Noise (타이어 공명 소음(Tire Cavity Resonance Noise) 저감에 관한 연구)

  • Bang, M.J.;Choi, S.I.;Choo, K.C.;Lee, H.J.;Son, C.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.596-599
    • /
    • 2008
  • Traditionally, tire made a role of function, which is supporting vehicle load, making brake, transferring traction, etc. But tire is a part of vehicle design, nowadays. In accordance with this market trend, customers need a wide tread design tire (i.e. low series tire). Generally low Series Tire means stiffer than general tire. That brings out increasing road noise. (Especially tire cavity resonance noise) Tire noise is divided in structure home noise and air borne noise. Tire cavity resonance noise (structure home noise) come from vibration between tire and vehicle. In the study, we investigated that tire cavity resonance noise is affected by stiffness of tread and sidewall.

  • PDF

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.