• Title/Summary/Keyword: and molecular beam epitaxy

Search Result 276, Processing Time 0.028 seconds

Effects of oxidized CrN buffer layer on the growth of epitaxial ZnO film on Si(111) by Plasma Assisted Molecular Beam Epitaxy

  • Kim, Jung-Hyun;Han, Seok-Kyu;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong;Song, Jung-Hoon;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.115-115
    • /
    • 2009
  • Epitaxial ZnO film was grown on Si(111) substrate with oxidazed CrN buffer by plasma-assisted molecular beam epitaxy (PAMBE). The growth and structural properties are investigated. The single crystalline growth was revealed by in-situ RHEED analysis. Crystalline quality of ZnO film grown on oxidized CrN buffer was investigated by the X-ray rocking curves. The FWHMs of (0002) XRCs was $1.379^{\circ}$. This value was smaller than the ZnO film grown directly on (111) Si substrate.

  • PDF

Emission wavelength tuning of porous silicon with ultra-thin ZnO capping layers by plasma-assited molecular beam epitaxy (다공성 실리콘 기판위에 Plasma-assisted molecular beam epitaxy으로 성장한 산화아연 초박막 보호막의 발광파장 조절 연구)

  • Kim, So-A-Ram;Kim, Min-Su;Nam, Gi-Ung;Park, Hyeong-Gil;Yun, Hyeon-Sik;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.349-350
    • /
    • 2012
  • Porous silicon (PS) was prepared by electrochemical anodization. Ultra-thin zinc oxide (ZnO) capping layers were deposited on the PS by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of the ZnO capping layers on the properties of the as-prepared PS were investigated using scanning electron microscopy (SEM) and photoluminescence (PL). The as-prepared PS has circular pores over the entire surface. Its structure is similar to a sponge where the quantum confinement effect (QCE) plays a fundamental role. It was found that the dominant red emission of the porous silicon was tuned to white light emission by simple deposition of the ultra-thin ZnO capping layers. Specifically, the intensity of white light emission was observed to be enhanced by increasing the growth time from 1 to 3 min.

  • PDF

A Study of the Photoluminescence of ZnO Thin Films Deposited by Radical Beam Assisted Molecular Beam Epitaxy (라디칼 빔 보조 분자선 증착법 (Radical Beam Assisted Molecular Beam Epitaxy) 법에 의해 성장된 ZnO 박막의 발광 특성에 관한 연구)

  • Suh, Hyo-Won;Byun, Dong-jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.347-351
    • /
    • 2003
  • II-Ⅵ ZnO compound semiconductor thin films were grown on $\alpha$-Al$_2$O$_3$(0001) single crystal substrate by radical beam assisted molecular beam epitaxy and the optical properties were investigated. Zn(6N) was evaporated using Knudsen cell and O radical was assisted at the partial pressure of 1$\times$10$^{4}$ Torr and radical beam source of 250-450 W RF power. In $\theta$-2$\theta$ x-ray diffraction analysis, ZnO thin film with 500 nm thickness showed only ZnO(0002)and ZnO(0004) peaks is believed to be well grown along c-axis orientation. Photoluminescence (PL) measurement using He-Cd ($\lambda$=325 nm) laser is obtained in the temperature range of 9 K-300 K. At 9 K and 300 K, only near band edge (NBE) is observed and the FWHM's of PL peak of the ZnO deposited at 450 RF power are 45 meV and 145 meV respectively. From no observation of any weak deep level peak even at room temperature PL, the ZnO grains are regarded to contain very low defect density and impurity to cause the deep-level defects. The peak position of free exciton showed slightly red-shift as temperature was increased, and from this result the binding energy of free exciton can be experimentally determined as much as $58\pm$0.5 meV, which is very closed to that of ZnO bulk. By van der Pauw 4-point probe measurement, the grown ZnO is proved to be n-type with the electron concentration($n_{e}$ ) $1.69$\times$10^{18}$$cm^3$, mobility($\mu$) $-12.3\textrm{cm}^2$/Vㆍs, and resistivity($\rho$) 0.30 $\Omega$$\cdot$cm.

GaAs Epilayer Growth on Si(100) Substrates Cleaned by As/Ga Beam and Its RHEED Patterns (As과 Ga 빔 조사에 의해 세척된 Si(100) 기판 위에 GaAs 에피층 성장과 RHEED 패턴)

  • Yim, Kwang-Gug;Kim, Min-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.170-175
    • /
    • 2010
  • The GaAs epitaxial layers were grown on Si(100) substrates by molecular beam epitaxy(MBE) using the two-step method. The Si(100) substrates were cleaned with different surface cleaning method of vacuum heating, As-beam, and Ga-beam at the substrate temperature of $800^{\circ}C$. Growth temperature and thickness of the GaAs epitaxial layer were $800^{\circ}C$ and 1 ${\mu}m$, respectively. The surface structure and epitaxial growth were observed by reflection high-energy electron diffraction(RHEED) and scanning electron microscope(SEM). Just surface structure of the Si(100) substrate cleaned by Ga-beam at $800^{\circ}C$ shows double domain ($2{\times}1$). RHEED patterns of the GaAs epitaxial layers grown on Si(100) substrates with cleaning method of vacuum heating, As-beam, and Ga-beam show spot-like, ($2{\times}4$) with spot, and clear ($2{\times}4$). From SEM, it is found that the GaAs epitaxial layers grown on Si(100) substrates with Ga-beam cleaning has a high quality.

Lasing Characteristics of GaAs-Based 1300 nm Wavelength Region InAs Quantum Dot Laser Diode (GaAs 기반 1300 nm 파장대역 InAs 양자점 레이저 다이오드의 발진 특성)

  • Kim, K.W.;Choa, N.K.;Song, J.D.;Lee, J.I.;Park, Jeong-Ho;Lee, Y.J.;Choi, W.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.266-271
    • /
    • 2009
  • We have investigated the lasing characteristics of GaAs-based 1300 nm wavelength region InAs Quantum Dot Laser Diode grown by Migration Enhanced Molecular Beam Epitaxy. Under a pulsed and CW operation, we observed the state switching of lasing wavelength from ground state (1302 nm) to excited state (1206 nm) due to the gain saturation of ground state. Under a pulsed operation, $J_{th}=92A/cm^2$, $\lambda_L=1311\;nm$ and under a CW operation, $J_{th}=247A/cm^2$, $\lambda_L=1320\;nm$.

Polarity Control of Wurtzite Crystal by Interface Engineering (계면공학에 기초한 우르차이트 결정의 극성 조절)

  • Hong, Soon-Ku;Suzuki, Takuma;;Cho, Myung-Whan;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.95-96
    • /
    • 2005
  • The general method and mechanism for the polarity control of heteroepitaxial wurtzite films, such as ZnO and GaN, by interface engineering via plasma-assisted molecular beam epitaxy are addressed. We proposed the principle and method controlling the crystal polarity of ZnO on GaN and GaN on ZnO. The crystal polarity of the lower film was maintained by forming a heterointerfce without any interface layer between the upper and the lower layers. However the crystal polarity could be changed by forming the heterointerface with the interface layer having an inversion center. The principle and method suggested here give us a promising tool to fabricate polarity inverted heterostructures, which applicable to invent novel heterostructures and devices.

  • PDF

Optical and Structural Properties of Emerging Dilute III-V Bismides

  • Santos, B.H. Bononi Dos;Gobatoa, Y. Galvao;Heninib, M.
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.211-220
    • /
    • 2014
  • In this paper, we present a review of optical and structural studies of $GaBi_xAs_{1-x}$ epilayers grown by Molecular Beam Epitaxy (MBE) on (311)B and (001) GaAs substrates with different As fluxes. The results indicate that under near-stoichiometric conditions the bismuth incorporation is higher for samples grown on (311)B GaAs substrates than for those grown on (001) GaAs. In addition, carrier localization effects in GaBiAs layers are clearly revealed for both samples by optical measurements. The (311)B samples showed evidence of higher density of defects. It has also been found that the nonradiative centers play a significant role in the recombination process in this material system. The influence of post-growth annealing on the microstructural, optical, and magneto-optical properties was also investigated. An important improvement of optical and spin properties after thermal annealing due to the reduction of defects in the GaBiAs layers was observed.

Surface Morphology of AlSb on GaAs Grown by Molecular Beam Epitaxy and Real-time Growth Monitoring by in situ Ellipsometry

  • Kim, Jun Young;Lim, Ju Young;Kim, Young Dong;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.214-217
    • /
    • 2017
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. We report the effect of growth temperature on structural properties of AlSb grown on GaAs substrate. In particular we studied the surface of AlSb with the growth temperature by atomic force microscopy, and concluded that optimized growth temperature of AlSb is $530^{\circ}C$. We also show the result of real-time monitoring of AlSb growth by in situ ellipsometry. The results of the structural study are good agreement with the previous reported ellipsometric data.

A Study on ZnSSe : Te/ZnMgSSe DH Structure Blue and Green Light Emitting Diodes

  • Lee Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.795-800
    • /
    • 2005
  • The optical properties of $ZnS_{y}Se_{1-x-y}:Te_x\;(x\;<\;0.08,\;y\∼0.11$) alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_{1}$Tel and $Te_{n}$ (n$\geq$2) cluster bound excitons, respectively. Bright blue (462 nm) and green (535 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer.

Annealing Effects on $Zn_{0.9}Cd_{0.1}$/Se/ZnSe Strained Single Quantum Well (Zn_{0.9}Cd_{0.1}/ZnSe 변형된 단일 양자우물구조의 열처리 효과)

  • 김동렬;배인호;손정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.467-471
    • /
    • 2000
  • The thermal annealing effect of $Zn_{0.9}Cd_{0.1}$ single quantum-well structures grown by molecular beam epitaxy is investigated. As the results of before and after rapid thermal annealed samples a red shift of E1-HH1 peak by Cd interdiffusion during thermal annealing of ZnCeSe/ZnSe sample was observed. In the case of annealed sample over $450^{\circ}C$ donor and acceptor impurities related peaks were observed which seems to be due to a diffusion of Ga and As from GaAs substrate. And also interdiffusion phenomena is idenified by the results of DCX measurements and which are consisten with the PL measurements.

  • PDF