• Title/Summary/Keyword: and deflection

Search Result 3,705, Processing Time 0.035 seconds

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

A Deflection Routing using Location Based Priority in Network-on-Chip (위치 기반의 우선순위를 이용한 네트워크 온 칩에서의 디플렉션 라우팅)

  • Nam, Moonsik;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.108-116
    • /
    • 2013
  • The input buffer in Network on Chip (NoC) router plays a key role in on-chip-network performance, which is utilized in flow control and virtual channel. However, increase in area and power due to input buffers as the network size gets larger is becoming severe. To solve this problem, a bufferless deflection routing without input buffer was suggested. Since the bufferless deflection routing shows poor performance at high network load, other approaches which combine the deflection routing with small size side buffers were also proposed. Nonetheless these new methods still show deficiencies caused by frequent path collisions. In this paper, we propose a modified deflection routing technique using a location based priority. In comparison with existing deflection routers, experimental results show improvement by 12% in throughput with only 3% increase in area.

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형 시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

The Effect of the Gap of Spline on the Deflection of Propeller Shaft (스플라인의 공차가 프로펠러 샤프트의 처짐에 미치는 영향)

  • Han, Dong-Seop;Lee, Seong-Wook;Kim, Yong;Han, Geun-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.172-174
    • /
    • 2007
  • A propeller shaft is the device which is used to transmit the power between two shafts in a vehicles, an industrial machinery, etc. The end of spline is worm due to the deflection of the propeller shaft, and a lifetime of it is reduced, because it for industrial machinery has the length of 2,500 mm, the weight of $300\;kg_{f},$ and the sliding distance of $\pm250\;mm.$ Accordingly in this study we analyzed the effect of the gap of spline on the deflection of a propeller shaft carrying out the finite element analysis, in order to determine the proper gap of spline to minimize the deflection of it. We adopt 10-kinds of gap of spline from 0.05 mm to 0.5 mm at interval of 0.05 mm as the design parameter for the finite element analysis and the centrifugal force as the load condition.

  • PDF

A Study on the Deflection of Large Mold for Injection Molding (대형 사출금형의 성형시 발생하는 금형 휨에 관한 연구)

  • Hwang, Si-Hyun;Kim, Chul-Gyu;Shim, Soo-Kil;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.99-102
    • /
    • 2008
  • Large injection molds commonly have molding defects such as flashes and variation of product thickness. In this study, we conducted injection molding CAE analysis to find out the cavity pressure and structural analysis to find out mold deflection as input load conditions injection pressure obtained from injection molding analysis. As the results from CAE analysis, we found which element is the most effective on the mold deflection and we suggested a mold design to minimize the mold deflection.

  • PDF

Measuring the Deflection of Concrete Beam Using Inclinometer (경사계을 이용한 콘크리트 보의 처짐 측정)

  • Noh, Tae-Sung;Rhim, Hong-Chul;Kim, Jong-Woo;Kim, Sung-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.102-103
    • /
    • 2013
  • The use of inclinometer to measure deflections of structures is tested through experiments. By placing sensors at the ends of specimens, which are easy to accessed, the maximum deflection of a beam at the center is measured. Upon changing load, the inclined angles are measured and then converted to deflection using mathematical relationship between the deflection and rotational angle. Through this research, it is expected to promote the use of inclinometers for structural health monitoring of buildings and civil structures.

  • PDF

Measurements of 3-D Deflection Characteristics of a Flexible Plate Levitated by Non-Contact Grippers Using SPIV Method (SPIV 기법을 이용한 비접촉 그리퍼에 의해 공중부양된 유연판의 3차원 변형 특성 측정)

  • Kim, Jaewoo;Kim, Joon Hyun;Lee, Yung Hoon;Sung, Jaeyong
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.54-62
    • /
    • 2021
  • This study has investigated the 3-D deflection characteristics of a flexible plate levitated by non-contact grippers using SPIV method. The measuring instrument consisted of a flexible plate located under four non-contact grippers and two cameras at the bottom of a transparent acrylic plate. Measurements were made on two materials (PVC and PC) for the plate with 50×50 cm2 area and 1 mm thickness. The deflection characteristics and flatness vary depending on the plate material, the gripper position and the air flow supplied to the gripper. For the material of PVC, the overall defection is convex. As the gripper position goes outward from the plate center, the upmost bending point also moves to the outside of the plate with the flatness increasing. However, the air flow rate does not affect the deflection pattern except for the small increase of flatness. For the material of PC, the shape of deflection changes from convex to concave as the gripper position goes out. The flatness is the highest at the point of transition from convex to concave, but the air flowrate has little effect on the flatness.

A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill (측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구)

  • Jeon, Du-Seong;Seo, Tae-Il;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

Fabrication of electromagnetically actuated Al mirror with staple joint structure (스테이플 조인트를 이용한 전자력 구동 Al 미러의 제작)

  • Lim, Tae-Sun;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1884-1886
    • /
    • 2001
  • In this study, we fabricated Al mirror driven by electromagnetic force. Because the mirror has Ni staple joint, it reduces the deflection angle of torsion spring for the maximum deflection of mirror. Therefore the magnetic field for maximum deflection can be reduced, By additional electrostatic force, the deflection angle of mirror plate can be increased to $90^{\circ}$. The fabricated mirror is actuated by electromagnetic force of a simple solenoid. The maximum deflection angle by magnetic field is about $86^{\circ}$ with $1.2{\times}10^4$ A/m.

  • PDF