• Title/Summary/Keyword: and cyclone

Search Result 552, Processing Time 0.027 seconds

An Experimental Study of 30CMM Solar Transpired Collector and Cyclone(STCC) System on Indoor Air Dust Removal Performance (30CMM급 태양기공 전기집진 설비의 실내분진 정화 능력에 관한 실험연구)

  • Noh, Ji-Hee;Park, Sang-Hyun;Kang, Eun-Chul;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.37-45
    • /
    • 2005
  • Higher requirement of advanced building design code and the development of construction technique have resulted in more thermal and air tight buildings. This has caused the sick building syndrome in a indoor air quality has been relatively getting worse. A new concept with a solar fresh air heating and electrostatic precipitator or called as STCC(Solar Transpired Collector and Cyclone) has been proposed to solve this IAQ issue. This paper describes the assessment study of STCC system under different outdoor airflow rates. The experiment was carried out under real condition with 30CMM STCC system test facility. Incense smoke was used to study the particle concentration decay trends under outdoor airflow rates 0CMM, 10CMM, 20CMM, 30CMM, with applied voltages of 5kV and 15kV for collecting and discharging electrodes of an Electrostatic Precipitator. Result shows that the particle decay increases by increasing the outdoor airflow rates. The collection efficiency, dust cleaning effectiveness(P) and application area calculation result comparisons have also been studied. This factors could be used to estimate how a dust of indoor air quality(IAQ) and removed for a building space with a STCC system.

A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific (북서태평양 태풍 강도 예측 컨센서스 기법)

  • Oh, Youjung;Moon, Il-Ju;Lee, Woojeong
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.

Possible effect of North Pacific Oscillation on Summer Tropical Cyclone Activity over the Western North Pacific (북서태평양에서 여름철 태풍활동에 대한 북태평양 진동의 영향)

  • Choi, Ki-Seon;Lee, Kyungmi;Kim, Jeoung-Yun;Park, Cheol-Hong
    • Journal of Environmental Science International
    • /
    • v.24 no.3
    • /
    • pp.339-352
    • /
    • 2015
  • This study analyzed the change in tropical cyclone (TC) activity according to the fluctuation in July-to-September average North Pacific Oscillation index (NPOI) and its underlying large-scale environment during the last 37 years from 1977 to 2013. For this purpose, seven years with highest index NPOI value (positive NPOI phase) and another seven years with lowest NPOI index value (negative NPOI phase) among the 37 years were selected as sample after excluding the ENSO years. During the positive NPOI phase, TCs were created in the east of tropical and subtropical western North Pacific and moved to the west from the Philippines toward the southern region in China or toward far eastern sea of Japan. Meanwhile, during the negative NPOI phase, TCs tended to proceed to the north toward Korea or Japan passing East China Sea from the eastern sea of the Philippines. As a result, also in the TC recurvature, TCs in positive NPOI phase showed a tendency of recurving toward more eastern direction compared to TCs in negative NPOI phase. Hence, TC intensity was stronger in negative NPOI phase which allowed more time for obtaining energy from the ocean.

Experimental Study on Particle Collection Efficiency of Axial-flow Cyclone in Air Handling Unit (공기조화기 장착용 축상유입식 싸이클론의 입자제거효율에 대한 실험적 연구)

  • Kim, Se-Young;Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jin-Ho;Kim, Myung-Joon;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.272-280
    • /
    • 2011
  • A novel particle removal system for air handling unit (AHU) of subway station was evaluated experimentally. The novel system was designed in order to minimize the maintenance cost by applying axial-flow cyclones. The system consists of multiple cyclone units and dust trap. Based on our previous numerical study, it was found to be effective for removal $1\sim10{\mu}m$ sized dust particles. In this study, we manufactured the mock-up model and evaluated the model experimentally. Liquid and solid test particles were generated for evaluating collection efficiency of the system and the pressure drop was monitored. The collection efficiency was varied from 41.2% to 85.9% with increasing the sizes of particle from 1 to $6.5{\mu}m$ by particle count ratio of inlet and outlet. The pressure drop was maintained constant less than $20mmH_2O$. In addition, the collection efficiency was estimated by total mass for solid test particles. It was found that the collection efficiency was 65.7% by particle mass ratio of inlet and outlet. It shows that present system can replace current pre-filters used in subway HVAC system for removing particulate matters with minimal operational cost.

Numerical investigation of ceramic particle movement for injected gas flow rate in cyclone separator system (사이클론 분리기 시스템 내에서의 가스 주입 유속에 따른 세라믹 입자 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • Using computational fluid dynamics (CFD) method, we investigated three-dimensional fluid flow field and particle movement with respect to the injected gas flow rate variation in typical cyclone separator system. The results of numerical investigation were deduced by coupling the analysis of fluid flow field with Wavier-stokes equation and the tracking of the particle trajectory with Langrangian approach. It was shown that the increasing of injected gas flow rate resulted in the increasing of pressure loss in the separator. This change of inner pressure had an effect on an aspect of the fluid flow in the separator. Particle movement was determined by fluid flow in the separator and was fully depended on a diameter of particles under the fixed flow rate. Increasing of injected gas flow rate was led to an increasing of the trace of particle, so the particles moved to the lower part of the separator. For this reason, the minimum diameters of the particles were decreased and increased the separation rate under the fixed particle diameter. In conclusion, the changes of injected gas flow rate have an important factor to the fluctuation of the fluid flow field and particle trajectory in the separator.

Development of Wind Induced Wave Predict Using Revisited Methods

  • Choi, Byoung-Yeol;Jo, Hyo-Jae;Lee, Kang-Ho;Byoun, Dong-Ha
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.124-134
    • /
    • 2018
  • In this study, when the stability of the structure against the ocean wave is considered for designing the offshore structures in the Pacific, Indian ocean and Atlantic regions where the cyclone is largely generated, the ocean wave caused by the cyclone as well as the storm surge which called wind induced wave shall be predicted accurately for the purpose of judgment. The predicted wind induced wave was evaluated by comparing the outcome results the model test of Nobuhiro Matsunaga (1996) and Conventional Experiment forms such as Jonswap spectral forms(Carter, 1982), Simplified Donelan / Jonswap forms(Wilson 1965), Donelan spectral forms(Donelan 1980), Revised SPM forms(Schafer Lake 2005, 2007, 2008), SPM forms(CERC 1977), the CEM forms(Kazeminezhad et al., 2005), SMB forms(Sverdrup Munk and Bretschneider 1947,1954, 1970), and Revised Wilson forms(Wilson 1965, Goda 2003). Most of these conventional experiment forms confirmed a good match when the fetch length is less than 10 km. However, normal cyclone fetch length is more than 100km, With this fetch length, the comparison result is 10.4% of deviation when used Jonswap spectral forms(Carter, 1982) but the deviation of the other forms is around 74% due to boundary limit of fetch and wind duration. Therefore, in this study, we proposed the revised forms after comparing these results with the model results. We confirmed that the deviation range is around 10% based on revisited experiment forms. Since the model test was carried out in the small water tank, the scale up factor was applied to the mode test results in order to obtain similar results to the actual environment from revisited forms.

A Study on the Framework of Decision Making on the Facility Investment of Production Automation Using CYCLONE Techniques (사이클론 기법 기반 생산자동화의 설비투자 의사결정 Framework에 관한 연구)

  • Jeong, Hyeon-ki;Lee, Dong-soo;Bae, Jeong-hoon;Shin, Sung-chul;Kim, Soo-young;Lee, Jae-chul;Jeong, Bo-yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.420-427
    • /
    • 2016
  • The marine equipment companies expanding facility investment in accordance with the booming economy are suffering from the reduced demand and the growth of chinese businesses. In this regard, the risk of overinvestment and the importance of prudent equipment investment must be reconsidered. Thus, in this study we performed a productivity and economical efficiency analysis in order to evaluate the investment value on production facilities in a company under the present conditions. The freezer of a fishing vessel manufactured by N company is selected as the subject of our study, while the assembly and welding cooling plates are configured as the scope of automation. Analysis on productivity and economical efficiency was conducted through CYCLONE (Cyclic Operation Network) simulation and economic analysis methods after analyzing the production process of freezer. The proposed analytical technique can be used to support the investment decision in production automation equipment of fishing vessels freezer.

Collection Characteristics of Particulate Matters from Biomass Burning by Control Devices: Mainly Commercial Meat Cooking (생물성연소에서 발생하는 미세먼지의 장치별 집진 특성: 고기구이를 중심으로)

  • Park, Seong-Kyu;Choi, Sang-Jin;Park, Geon-Jin;Kim, Jin-Yun;Bong, Choon-Keun;Park, Seong-Jin;Kim, Jong-Ho;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.641-649
    • /
    • 2011
  • The aim of this study is to understand the characteristics of exhausting particulate matters (PM) and to control emitted PM from meat cooking restaurants. We found that $PM_{2.5}$, $PM_{5.0}$ occupy 69.2% and 98.6% of total PM from pork cooking, respectively. Therefore, we can see that it is not easy to remove PM generated from a pork cooking process. The collection efficiencies of various control devices, which are a condensing scrubber, a cyclone, an impactor, an oil filter and an electrostatic precipitator (ESP), were measured and compared. ESP had the highest collection efficiency (88.6%) and condensing scrubber had the lowest one (68.0%). However, the system recovering property should be considered to choose a control device because PM from meat cooking process are extremely stickiness. Therefore, we can recommend that ESP following an impactor or a cyclone is the best combination to remove PM generated from meat cooking restaurants.