• Title/Summary/Keyword: and clustering

Search Result 5,641, Processing Time 0.032 seconds

Security Clustering Algorithm Based on Integrated Trust Value for Unmanned Aerial Vehicles Network

  • Zhou, Jingxian;Wang, Zengqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1773-1795
    • /
    • 2020
  • Unmanned aerial vehicles (UAVs) network are a very vibrant research area nowadays. They have many military and civil applications. Limited bandwidth, the high mobility and secure communication of micro UAVs represent their three main problems. In this paper, we try to address these problems by means of secure clustering, and a security clustering algorithm based on integrated trust value for UAVs network is proposed. First, an improved the k-means++ algorithm is presented to determine the optimal number of clusters by the network bandwidth parameter, which ensures the optimal use of network bandwidth. Second, we considered variables representing the link expiration time to improve node clustering, and used the integrated trust value to rapidly detect malicious nodes and establish a head list. Node clustering reduce impact of high mobility and head list enhance the security of clustering algorithm. Finally, combined the remaining energy ratio, relative mobility, and the relative degrees of the nodes to select the best cluster head. The results of a simulation showed that the proposed clustering algorithm incurred a smaller computational load and higher network security.

Clustering Algorithm for Sequences of Categorical Values (범주형 값들이 순서를 가지고 있는 데이터들의 클러스터링 기법)

  • Oh Seung Joon;Kim Jae Yearn
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.125-132
    • /
    • 2002
  • We study clustering algorithm for sequences of categorical values. Clustering is a data mining problem that has received significant attention by the database community. Traditional clustering algorlthms deal with numerical or categorical data points. However, there exist many important databases that store categorical data sequences. In this paper we introduce new similarity measure and develope a hierarchical clustering algorithm. An experimental section shows performance of the proposed approach.

  • PDF

Clustering Algorithms for Reducing Energy Consumption - A Review

  • Kinza Mubasher;Rahat Mansha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.109-118
    • /
    • 2023
  • Energy awareness is an essential design flaw in wireless sensor network. Clustering is the most highly regarded energy-efficient technique that offers various benefits such as energy efficiency and network lifetime. Clusters create hierarchical WSNs that introduce the efficient use of limited sensor node resources and thus enhance the life of the network. The goal of this paper is to provide an analysis of the various energy efficient clustering algorithms. Analysis is based on the energy efficiency and network lifetime. This review paper provides an analysis of different energy-efficient clustering algorithms for WSNs.

GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System (협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링)

  • Choi, Ja-Hyun;Ha, In-Ay;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.17-24
    • /
    • 2011
  • Collaborative filtering system is the clustering about user is built and then based on that clustering results will recommend the preferred item to the user. However, building user clustering is time consuming and also once the users evaluate and give feedback about the film then rebuilding the system is not simple. In this paper, genre pattern of movie recommendation systems is being used and in order to simplify and reduce time of rebuilding user clustering. A Frequent pattern networks is used and then extracts user preference genre patterns and through that extracted patterns user clustering will be built. Through built the clustering for all neighboring users to collaborative filtering is applied and then recommends movies to the user. When receiving user information feedback, traditional collaborative filtering is to rebuild the clustering for all neighbouring users to research and do the clustering. However by using frequent pattern Networks, through user clustering based on genre pattern, collaborative filtering is applied and when rebuilding user clustering inquiry limited by search time can be reduced. After receiving user information feedback through proposed user clustering based on genre pattern, the time that need to spent on re-establishing user clustering can be reduced and also enable the possibility of traditional collaborative filtering systems and recommendation of a similar performance.

Performance Analysis of Clustering and Non-clustering Methods in Flash Memory Environment (플래시 메모리 환경에서 클러스터링 방법과 비 클러스터링 방법의 성능 분석)

  • Bae, Duck-Ho;Chang, Ji-Woong;Kim, Sang-Wook
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.599-603
    • /
    • 2008
  • Flash memory has its unique characteristics: the write operation is much more costly than the read operation and in-place updating is not allowed. In this paper, we analyze how these characteristics of flash memory affect the performance of clustering and non-clustering in record management, and shows that non-clustering is more suitable in flash memory environment, which does not hold in disk environment. Also, we discuss the problems of the existing non-clustering method, and identify considerable designing factors of record management method in flash memory environment.

The effect of social capital on firm performance within industrial clusters: Mediating role of organizational learning of clustering SMEs (산업클러스터 내 사회적 자본이 기업성과에 미치는 영향: 조직학습의 역할을 중심으로)

  • Kim, Shin-Woo;Seo, Ribin;Yoon, Heon-Deok
    • Knowledge Management Research
    • /
    • v.17 no.3
    • /
    • pp.65-91
    • /
    • 2016
  • Although the success of industrial clusters largely depends on whether clustering firms can achieve economic performance, there has been less attention on investigating factors and conditions contributing to the performance enhancement for clustering small and medium-sized enterprises (SMEs). Along this vein, we adopt the theories of social capital and organizational learning as those success factors for clustering SMEs. This study thus aims at examining what effect social capital accrued in the relationships among actors within clusters has on firm performance of clustering SMEs and what role organizational learning plays in the linkage between social capital and firm performance. For the empirical analysis, we operationalized the variables and their measures to develop questionnaires through the theoretical reviews on literatures. As a sample of 227 clustering SMEs, our collected data was analyzed by hierarchical regression analysis. The results confirmed that a high level of social capital, represented by network, trust, and norm, has positive effect on firm performance of clustering SMEs. We also found that clustering firms presenting high organizational learning, represented by absorptive and transformative capability, achieve better performance than those placing less value on organizational learning. Furthermore the significant relationship between social capital and firm performance is mediated partially through organizational learning. These findings imply not only that the territorial agglomeration of industrial cluster does not guarantee the performance creation of clustering SMEs but that they need to develop social capital among various actors within clusters, facilitating their knowledge diffusion. In order to absorb and mobilize the shared knowledge and information into strategic resources, the firms should improve their capability associated with organizational learning. These expand our understanding on the importance of social capital and organizational learning for the performance enhancement of clustering firms. Differentiating from major studies addressing benefits and advantages of industrial cluster, this study based on the perspective of firm-internal business process contributes to the literature advancement. Strategic and policy implications of this study are discussed in detail.

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF

Web Document Clustering based on Graph using Hyperlinks (하이퍼링크를 이용한 그래프 기반의 웹 문서 클러스터링)

  • Lee, Joon;Kang, Jin-Beom;Choi, Joong-Min
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.590-595
    • /
    • 2009
  • With respect to the exponential increment of web documents on the internet, it is important how to improve performance of clustering method for web documents. Web document clustering techniques can offer accurate information and fast information retrieval by clustering web documents through semantic relationship. The clustering method based on mesh-graph provides high recall by calculating similarity for documents, but it requires high computation cost. This paper proposes a clustering method using hyperlinks which is structural feature of web documents in order to keep effectiveness and reduce computation cost.

  • PDF

Regional Grouping of the interconnected network system through Sequential Clustering (순차적 클러스터링을 이용한 지역별 그룹핑)

  • Kim, Hyun-Hong;Song, Hyoung-Yong;Kim, Jin-Ho;Park, Jong-Bae;Shin, Jung-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.252-254
    • /
    • 2007
  • This paper introduces the method of sequential clustering as a tool for the effective clustering of mass unit electrical systems. The interconnected network system retains information about the location of each line. With this information, this paper aims to carry out initial clustering through the transmission usage rate, compare the results of similarity measures for regional information with similarity measures for regional price, and introduce the technicalities of the clustering method. This transmission usage rate used power flow based on congestion costs and modified similarity measurements using the FCM algorithm. This paper also aims to prove the propriety of the proposed clustering method by comparing it with existing clustering methods that use the similarity measurement system. The proposed algorithm is demonstrated through the IEEE 39-bus RTS.

  • PDF

EXTENDED ONLINE DIVISIVE AGGLOMERATIVE CLUSTERING

  • Musa, Ibrahim Musa Ishag;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.406-409
    • /
    • 2008
  • Clustering data streams has an importance over many applications like sensor networks. Existing hierarchical methods follow a semi fuzzy clustering that yields duplicate clusters. In order to solve the problems, we propose an extended online divisive agglomerative clustering on data streams. It builds a tree-like top-down hierarchy of clusters that evolves with data streams using geometric time frame for snapshots. It is an enhancement of the Online Divisive Agglomerative Clustering (ODAC) with a pruning strategy to avoid duplicate clusters. Our main features are providing update time and memory space which is independent of the number of examples on data streams. It can be utilized for clustering sensor data and network monitoring as well as web click streams.

  • PDF